The Application of Machine Learning in Agriculture Sustainability: A **Review**

Esther Loo Xiao Wen¹, Ho Ming Kang², Daniel Mago Vistro³ ^{1, 2, 3}Asia Pacific University of Technology and Innovation, Kuala Lumpur, Malaysia ¹TP067083@mail.apu.edu.my, ²ming.kang@staffemail.apu.edu.my, ³daniel.mago@staffemail.apu.edu.my

Corresponding author email: daniel.mago@staffemail.apu.edu.my

Abstract— The major challenge arises from social issues such as overpopulation and the competition over food resources and groundwater overused poses the main threat to food security. Sustainable development is becoming increasingly important in the agricultural sector, considering the environmental pressures from climate change, soil management, crop yield management, water consumption, and irrigation management, as well as disease management. This paper presents the finding of the literature review analysis to establish the modern evidence regarding the application of Machine Learning in Agriculture Sustainability. Published papers are reviewed within the period from 2018 to 2022. Advanced computer algorithm techniques have been learned and explored to improvise the challenges faced by agriculture sector, to ensure the efficiency of yields and sustainability, and to increase the level of quality of agriculture products in society generally. Meanwhile, the methods of Machine Learning have also been deeply explored recently to develop advanced techniques for agriculture to increase data-driven decision-making for farmers.

Keywords— agriculture sustainability; climate management; crop management; disease management; irrigation management; machinelearning; soil management

1. Introduction

maintaining human activities to ensure production quality; support the growing population. moreover, it also plays an important role as the backbone of the economic growth and contributing to the country's GDP despite of the COVID-19 pandemic [1]. Meanwhile, the world's The systematic literature review (SLR) is adopted with threeconsideration of not just providing food, but also contain high for this literature review study: nutritious in food production, insufficient arable land- agriculture, climate crisis, quality of the soil, and the groundwater consumption. Knowing that agriculture heavily depends on Learning algorithm influenced agriculture sustainability? climate, it will possibly affect the yield production without proper • planning and scheduling on sowing to harvesting [4]. better? Nevertheless, irrigated agriculture continues to consume up to • 70% of the groundwater used globally and it has contributed to for agriculture sustainability using Machine Learning? the global environmental issues- groundwater overused [5]. It is not an easy task to meet the growing food supply demands even The study for scientific articles is broken down into selected optimal season to sow and harvest through the analyzation on soil properties of weather

agricultural practices in the aim of proposing innovative Agriculture activities remains as an essential element in approaches to sustain and enhance agricultural sustainability to

2. Materials and Methods

population is expected to reach over 10 billion by 2050 [2]. The staged methodology comprising of pre-operational stage, lack of knowledge on the current agriculture condition is one of operational stage, and post-operational stage. The review protocol the major issues from sowing to harvesting [3]. Upon the rapid was defined to emphasize the application of Machine Learning population growth and urbanization, United Nations (UN) claims algorithms in Agricultural Sustainability; more specifically on that the world will be facing food shortage crisis if the agriculture increasing the efficiency of agricultural sustainability. Firstly, sector fails to produce doubled by 2050. Taking into research questions are identified to address the objective summary

- RQ1- To what extent that the adoption of Machine
- RQ2- Which Machine Learning algorithm performed
- RQ3- Which factors have been discussed in the literature

with the increased production in agriculture [6]. The usage of keywords such as machine learning algorithms, agriculture Machine Learning will be helpful for agricultural sustainability as sustainability, soil management, irrigation management, crop it helps to predict and manage the crop productivity with the yield management, climate changes, and disease management were used. Published research papers are reviewed within the period from 2018 to 2022. In addition, the review was conducted through the search strategy of digital journal databases such as forecast and historical crop performance; thus, reducing water IEEE, Science Direct, Taylor and Francis, Springer Link, MDPI, and fertilizer consumption as well as enhancing crop yields Emerald, and Research Gate. The main search string which production. Consequently, it reduces the usage of natural includes the keywords of "machine learning" OR "artificial ecosystems and ensures that the food production is sufficient to intelligence" AND "agricultural sustainability" AND "soil meet the ever-growing population. Hence, it is critical to analyses management" AND "irrigation management" OR "water of the full-text edition. Journal papers that are limited to view are excluded as it does not provide a full-text publication to readers.

3. Results and Discussion

weather crisis and disease management.

- successfulness in agriculture, and it contains the source of can improve soil management.
- water consumption for the growth in crop production; agricultural sector fails to survive without water. An appropriate water influence on the prediction result on soil moisture level. consumption and irrigation management help to conserve the aquatic ecosystem.
- Crop yield management plays an important role during MANAGEMENT the harvesting season. It acts as a source of food and raw materials to the community and increases the rate of employment globally. According to The World Bank Data, agricultural production uses development is significant.
- the level of locally, regionally, and even globally.
- negative impact on the quantity and quality of crop production. the growing population due to the post-harvest disease on crops

I. SOIL MANAGEMENT

agriculture. Inappropriate soil management will possibly cause crop failure and degraded yield condition [7]. Moreover, the moisture level of soil has a significant impact on the crop yield variability [8]. A good knowledge on the different soil types and conditions may enhance crop yields and reserve the natural soil resources, with the adoption of agriculture operations and practices. This section of the review highlights the research with the assistance of Machine Learning.

In the paper of [9] performed two Machine Learning methods, i.e., least squares- support vector machines (LS-SVM) and the

management" AND "yield management" OR "yield prediction" Cubist, on 140 fresh Luvisol soil samples. The finding of the study AND "climate changes" OR "climate crisis" AND "disease showed that the Machine Learning methods have proved not only management". At a next stage, the selection criteria of the solving non-linear issues but successfully outperformed the journals are based on the publication of English and availability prediction on different soil types. Subsequently, paper of [10] used Crop Selection Method (CSM) to solve several factors such as seasonal problems to adapt a desired crop cultivation in an appropriate location and to maximize the yield production. The model accuracy from the prediction of soil helps to provide an Agriculture requires a great deal of decision-making and overview of the efficiency of soil management practices for uncertainties. Ranging from events related to mother nature and farmers. In the work of [11], the Neural Network approach was environmental issues to the matter of supply and demand; used as a prediction of six different properties such as soil features, meanwhile, farmers must deal with all these uneasiness, characterized as clay, sand and silt; based on Digital Elevation Considering the practice of agriculture activities is broad, this Model (DEM) with the combination of hydrographic parameters literature reviews the study on soil management, water of soil maps to predict the moisture level of soils. The author of consumption and irrigation management, crop yield management, [12] used the Fuzzy Modelling approach to provide farmer decision-making and recommendation based on the ongoing Soil is the basic and main contribution to the pattern of the soil content data, that consists of the three variables: Temperature, Humidity and Precipitation, Light and Wind; and nutrients, and stores water for the proper growth of crops and four output value: Healthy crop, Mild crop disease, Moderate crop development. The amount of available water determines the crop disease, and Severe crop disease. The author of [13] employed yield. A proper understanding and knowledge on soil conditions Classification and Regression trees, Random Forest Regression, and Boosted Regression Trees to predict the soil moisture nearby Agriculture production also critically depends on the a river valley in corresponds with the weather and climate condition. Hence, these explained algorithms have the highest

WATER CONSUMPTION AND IRRIGATION

The output of the crop yield productions is thought to contribute 70 percent of groundwater, on average globally [14]. This significantly to the overall economy of a country. Services like indicates that water consumption should be used wisely to agricultural business plan, agricultural marketing, and after-sales conserve the freshwater ecosystem. Irrigation scheduling and service have also been part of the crop production in the 21st management shows a significant impact on the quality and century. Thus, the opportunity to improvise the future crop quantity of crops. Moreover, it helps to control the supply of water to provide moisture to crops for growth [15]. Subsequently, poor Climate changes can affect the potential increase in the designed irrigation system leads to water waste of natural crop yields production and eventually attack the food security at resources, as a result in releasing toxic chemical to the soil hence reducing the crop yield productions [16]. Conventional irrigation Plant disease acts as a threat in agriculture and has a system is commonly practiced among farmers which they need to follow up with the modernized technique using Artificial This has resulted as a struggle for the agriculture sector to support Intelligence (AI); it benefits the crop with a controlled water input [17]. Hence, an effective irrigation system promotes a systematic balance on the long-term sustainability of climate, hydrologic cycle, and agronomical cycle [8].

Issues regarding soil management is an essential attribute in In the paper of [18] used Machine Learning in irrigation management in predicting the soil moisture, soil temperature and weather forecast to minimize the water usage in irrigation. The Machine Learning model is applied to extract information to generate a precision decision rules in a sustainable irrigation action [19]. In paper [20], used the Neural Network technique to determine the amount of water to be used based on input layer: the stages of the individual's crop growth or based on the types of method which corresponds with the agriculture soil management, crops in different environmental and evapotranspiration. Paper [21] employed results obtained from time series prediction as an application of Neural Network, to observe the rainfall, average temperature, movement of winds and cloud situation; through the usage of rainfall, farmers can minimize the water consumption during irrigation process [22].

III. CROP YIELD MANAGEMENT

storage [23]. It is practiced in agriculture activities to enhance the growth of crops. Machine Learning in forecasting models is highly used to boost the crop yield production [24]. The accuracy time to sow and harvest their crops [25].

decision-making using historical parameters on weather conditions. conditions, property of soils for seed variety selection decision on a targeted agriculture practice. The research has a 9 percent V. contribution to optimize the result on yield. The research conducted by a group of researchers performed a yield forecast Among other issues as equally important, crop disease constitutes level in soil using Machine Learning as they believed that the properties of soil are important in crop yield management. This paper has concluded that the Machine Learning techniques can help to determine any crop disease issues, improve on crop management, and resolve the cost- effectiveness and labor in the agricultural sector. A paper published by [8] reviewed the application of Machine Learning in the crop management and yield prediction. The system used in Machine Learning (KDE) to Paper [38] mentioned that the assistance of Artificial Intelligence contamination will be achieved [29].

IV. **CLIMATE CHANGES**

agricultural productivity and food security globally; however, different countries and regions face the significant impact differently [30]. The climate change phenomenon such as natural disaster has a huge impact on the agriculture productivity and profitability, hence influencing the decision- making on crop selection, and time of crop cycle [31]. Eventually, rain can possibly postpone the irrigation process and it helps to prevent water waste in the ecosystem.

Reference [32] implemented a method using Machine Learning Southeast Asia. The goal of the study is to precautionary alert the showed that Decision Tree has an accuracy rate of over 97 percent. regional farmers to have an informed decision to reduce potential loss on crops. In this review carried out by the author [33], the Neural Network Method was used as a process of supervised and 4. unsupervised learning to predict using different weather The growth of agricultural productivity needs to hit at least 70 algorithm: Random Forest, Neural Network, Decision Trees, and population growth and high demand on food supply, the

Linear Regression to predict the weather forecast through the temperature, evapotranspiration, and the velocity and direction of Crop yield management begins with the preparation of soils, wind; based on a specific location. The results showed that sowing of seeds, seedling, fertilizing, irrigation, harvesting and Random Forest and Decision Trees has a better performance in predicting all weather conditions, while Linear Regression obtained the maximum errors. In the framework of [35], mentioned that Random Forest is a well-known method applied in of a crop yield prediction could benefit the farmers to have better forecasting the rainfall models, as it can handle big data to avoid decision-making on the type of crops to grow and the suitable overfitting variables. Additionally, the paper of [36], critically discussed the application of Machine Learning model on weather prediction. Therefore, the result showed that Random Forest has The paper of [26] introduced the Machine Learning method of the highest accuracy rate on R-Square 0.97 Random Forest Kernel Density Estimation (KDE) in offering a data-driven consists of the highest prediction rate on predicting weather

DISEASE MANAGEMENT

model through Machine Learning on pre-season forecasting to a significant concern in agriculture to farmers. It has reported that have a yield management decision-making on the crop or genetic plant disease has caused losses in crop yield; even though spray selection and ideal time to harvest [27]. Meanwhile reference pesticides have been widely used for plant disease control, but it [28], worked on a review to study on the estimation of nitrogen has certainly had side effects to the environment such as contamination of groundwater, soils, and ecosystems of the wildlife [37]. According to Ngozi, the factors that will incubate diseases to attack plants can be based on properties of soil, genetic and climate fluctuation. To prevent and control these diseases in agriculture, farmers need to adopt the modern application of Machine Learning to minimize losses in crops [23].

detect occluded branches even with the inconspicuous foliage. and Machine Learning help to identify the area that obtained the The aim of the system is to provide an automating shaking vision highest risk in the spread of diseases in plants. Paper [39] used to reduce labor requirement during harvesting. Additionally, Residual Neural Network based model to address the plant Cisterna et al, performed the Machine Learning methods (KDE) diseases in different crops; the research has achieved a 97.36 in Precision Crop Management, based on the historical percent of accuracy rate in evaluating the Residual Neural parameters to manage the crop input and supply chain, to Network model. In the work of [40], the Neural Network was used optimize the profitability and the reduction of environment as a detection of early stripe rust on wheat. As a result, the detection of the disease outbreak contains 95 percent accuracy rate. The author of Nettleton et al, has used two Machine Learning methods (M5Rules and LSTM) to predict the plant disease. The results have proved that the chosen Machine Learning methods has The crop production and growth phase mainly depend on the provide a significant early warning signs to anticipate plant weather predictions. Climate change has been shown to affect diseases with the following input of air temperature, humidity, and wetness of leaf [41]. Additionally, this research of [42], critically performed using Long Short-Term Memory (LSTM) to treat problems on cotton diseases and pest's occurrence. The study aimed to use LSTM against other Machine Learning methods such as KNN, and Random Forest to predict Bollworm disease. The prediction of occurrence was used upon the discovery of bollworm diseases are more likely to occurred in the influence of temperature, humidity, and rain. The results have proven that the outperformed model is LSTM. In the work of [43], employed the Machine Learning (KNN, Decision Tree and Naïve Bayes) to approach to predict the preparedness of climate change in approach disease detection on crops. The result of the study

Conclusions

parameters. Paper [34] has proposed four Machine Learning percent by 2050 to satisfy human needs. Facing the rapid

International Journal of Data Science and Advanced Analytics (ISSN: 2563-4429)

agricultural sector cannot depend on the traditional method [44]. The application of the advanced technological solution has shown to be a great innovation idea to increase the efficiency of farming. Efficiency is an important attribute in the agriculture production, it focuses on the essential requirements on agricultural production such as water conservation through regulating and controlling the irrigation functions. However, a poor irrigation management will certainly influence the soil, quality and quantity of crop, and the weather predictions to predict the storage release management. The pre-production phase and production phase have a correlation factor of ecological conditions and yield productivity. Therefore, the application of Machine Learning provides a high productivity in the crop growth stages for sowing, seedling, irrigation, fertilizing, and harvesting; hence business organizations in agriculture sector will have a data-driven decision-making when Machine Learning are adopted.

References

- [1] J. Beckman, "The Importance of Agriculture in the Economy: Impacts fromCOVID19," American Journal of Agricultural Economics., vol. 103,no. 5, pp. 1595-1611, 2021.
- [2] L. Goedde, S. Das, J. Katz, A. Menard, and J. Revellat, "Agriculture's connected future: How technology can yield new growth," McKinsey&Company, 2020. [Online]. Available: https://www.mckinsey.com/industries/agriculture/our-insights/agricultures-connected-future-how-technology-can-yield-new-growth. [Accessed 5 May 2022].
- [3] G. Manogaran, C.H. Hsu, B. S. Rawal, B. A. Muthu, C. X. Mavromoustakis, and G. Mastorakis, "ISOF: Information Scheduling and Optimization Framework for Improving the Performance of Agriculture Systems Aided by Industry 4.0," IEEE Internet of Things Journal., vol. 8,no. 5, pp. 3120-3129, 2021.
- [4] The World Bank, "Agriculture and Food," The World Bank, 2020. [Online]. Available:
 - https://www.worldbank.org/en/topic/agriculture/overview#1. [Accessed 5 May 2022].
- [5] OECD, "Managing water sustainably is key to the future of food and Agriculture," Organization for Economic Co-operation and Development (OECD) 2022. [Online]. Available: https://www.oecd.org/. [Accessed 5 May 2022].
- [6] S. A. Bhat, and N. F. Huang, "Big Data and AI Revolution in Precision Agriculture: Survey and Challenges," *IEEE Access.*, vol. 9, no. 99, 2021.
- [7] I. Ghosh, U. Sarkar, and G. Banerjee, "Artificial Intelligence in Agriculture: A Literature Review," *International Journal of Scientific Research in Computer Science Applications and Management Studies.*, vol. 7, no. 3, 2018.
- [8] K. G. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis, "Machine Learning in Agriculture: A Review," Sensors., vol. 18, no. 8, pp. 2674, 2018.
- [9] A. Morellos, X. E. Pantazi, D. Moshou, T. Alexandridis, R. Whetton, G. Tziotzios, J. Wiebensohn, R. Bill, and A. M. Mouazen, "Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy," *Biosystem Engineering.*, vol. 152, pp. 104-116, 2016.
- [10] A. Suresh, K. Monisha, R. Pavithra, and B. M. Hariswamy, "Crop Selection and it's Yield Prediction," *International Journal of Recent Technology and Engineering.*, vol. 8, no. 6, 2020.
- [11] K. Anandan, R. Shankar, and S. Duraisamy, "Convolutional NeuralNetwork approach for the prediction of Soil texture properties," *Indian Journal of Science and Technology.*, vol. 14, no. 3, pp. 190-196, 2021.
- [12] P. Pandey, R. Litoriya, and A. Tiwari, "A framework for fuzzy modellingin agricultural diagnostics," *International Information and Engineering Technology Association.*, vol. 51, pp. 203-223, 2018.
- [13] Acharya, A. L. Daigh, and P. G. Oduor, "Machine Learning for Predicting Field Soil Moisture Using Soil, Crop, and Nearby Weather Station Data in the Red River Valley of the North," Soil Systems., vol. 5, no. 4, 2021.

- [14] The World Bank. "Water in Agriculture," The World Bank, 2022. [Online]. Available: https://www.worldbank.org/en/topic/water-in-agriculture#1. [Accessed 5 May 2022].
- [15] M. Romero, Y. C. Luo, B. F. Su, and S. Fuentes, "Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management," Computers and Electronics in Agriculture., vol 147, pp. 109-117, 2018.
- [16] R. Koech, and P. Langat, "Improving Irrigation Water Use Efficiency: A Review of Advances, Challenges and Opportunities in the Australian Context," Water MDPI., vol. 10, no. 12, 2018.
- [17] J. A. Blessy, and A. Kumar, "Smart Irrigation System Techniques using Artificial Intelligence and IoT," Third International Conference on Intelligence Communication Technologies and Virtual Mobile Networks (ICICV)., pp. 1355-1459, 2021.
- [18] A. Goap, D. Sharma, A. K. Shukla, and C. R. Krishna, "An IoT based smart irrigation management system using Machine learning and open-source technologies," *Computers and Electronics in Agriculture.*, vol. 155, pp. 41-49, 2018.
- [19] E. A. Abioye, O. Hensel, T. J. Esau, O. Elijah, M. S. Z. Abidin, A. S. Ayobami, O. Yerima, and A. Nasirahmadi, "Precision Irrigation Management Using Machine Learning and Digital Farming Solution," *AgriEngineering*., vol. 4, no. 1, pp 70-103, 2022.
- [20] M. Janani, and R. Jebakumar, "A Study on Smart Irrigation Using Machine Learning," Cell & Cellular Life Sciences Journal., vol. 4, no. 1, 2019
- [21] K. D. Sardeshpande, and V. R. Thool, "Rainfall Prediction: A Comparative Study of Neural Network Architectures," Emerging Technologies in Data Mining and Information Security., vol. 755, pp. 19-28, 2018.
- [22] S. Oluyemi, "The Benefits of Artificial Intelligence in Crop Production," Research Method and Professional Issues., vol. 11, no. 1, pp. 222, 2022.
- [23] C. E. C. Ngozi, "Applications of Artificial Intelligence in Agriculture: A Review," Engineering, Technology & Applied Science Research., vol. 9, no. 4, pp. 4377-4383, 2019.
- [24] C. L. D. Abreu, and J. P. V. Deventer, "The Application of Artificial Intelligence (AI) and Internet of Things (IoT) in Agriculture: A Systematic Literature Review," Southern African Conference for Artificial Intelligence Research., vol. 1551, pp. 32-46, 2022.
- [25] T. V. Klompenburg, A. Kassahun, and C. Catal, "Crop Yield Prediction using Machine Learning: A systematic literature review," Computers and Electronics in Agriculture., vol. 177, pp. 1-18, 2020.
- [26] D. Sundaramoorthi, and L. X. Dong, "Machine- Learning- Based Simulation for Estimating Parameters in Portfolio Optimization: Empirical Application to Soybean Variety Selection," SSRN., pp. 1-40, 2019.
- [27] R. L. F. Cunha, B. Silva, and M. A. S. Netto, "A Scalable Machine Learning System for Pre-Season Agriculture Yield Forecast," 2018 IEEE 14th International Conference on e-Science., pp. 423-430, 2018.
- [28] D. Elavarasan, D. R. Vincent, V. Sharma, A. Y. Zomaya, and K. Srinivasan, "Forecasting yield by integrating agrarian factors and machine learning models: A survey," *Computers and Electronics in Agriculture.*, vol. 155, pp. 257-282, 2018.
- [29] I. Cisternas, I. Vellasquez, A. Caro, and A. Rodriguez, "Systematicliterature review of implementations of precision agriculture," *Computers and Electronics in Agriculture.*, vol. 176, pp. 1-11, 2020.
- [30] Jayabalan, M. and O'Daniel, T., 2017, November. Continuous and transparent access control framework for electronic health records: A preliminary study. In 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE) (pp. 165-170). IEEE.
- [31] M. M. Alam, C. Siwar, M. W. Murad, and M. E. B. Toriman, "Impacts of Climate Change on Agriculture and Food Security Issues in Malaysia: An Empirical Study on Farm Level Assessment," World Applied Sciences Journal., vol. 14, no. 3, pp. 431-442, 2011.
- [32] Prathyusha., Zakiya., Savya., Tejaswi., N. Alex, and C. C. Sobin, "A Method for Weather Forecasting Using Machine Learning," 2021 5th Conference on Information and Communication Technology (CICT)., pp.1-6, 2021.
- [33] M. R. Bendre, R. C. Thool, and V. R. Thool, "Big Data in Precision Agriculture Through ICT: Rainfall Prediction Using Neural Network Approach," Proceedings of the International Congress on Information and Communication Technology., vol. 438, pp. 165-175, 2016.

International Journal of Data Science and Advanced Analytics (ISSN: 2563-4429)

- [34] F. Raimundo, A. Gloria, and P. Sebastiao, "Prediction of Weather Forecast for Smart Agriculture supported by Machine Learning," 2021 IEEE World AI IoT Congress (AIIoT)., pp. 1-5, 2021.
- [35] M. K. Saggi, and S. Jain, "Reference evapotranspiration estimation and modelling of the Punjab Northern India using deep learning," *Computers and Electronics in Agriculture.*, vol. 156, pp. 387-398, 2019.
- [36] R. Meenal, P. A. Michael, D. Pamela, and E. Rajasekaran, "Weather Prediction using random forest machine learning model," *Indonesian Journal of Electrical Engineering and Computer Science.*, vol. 22, no. 2,pp. 1208-1215, 2021.
- [37] FOA, "Pest and Pesticide Management," Food and Agriculture [43] Organization of the United Nations, 2022. [Online]. Available: https://www.fao.org/pest-and-pesticide-management/pesticide-risk-reduction/pesticide-management/en/. [Accessed 5 May 2022].
- [38] Bestelmeyer et al, "Scaling Up Agricultural Research with Artificial [44] Intelligence," *IT Professional.*, vol. 22, no. 3, pp. 33-38, 2020.
- [39] C. Karthik, and N. Ulaganathan, "Application for Plant's Leaf Disease Detection using Deep Learning Techniques," *International Research Journal of Engineering and Technology (IRJET).*, vol. 7, no. 8, pp. 1-7, 2020.
- [40] M. Schirrmann, N. Landwehr, A. Giebel, A. Garz, and K. H. Dammer, "Early Detection of Stripe Rust in Winter Wheat Using Deep Residual

- Neural Networks," US National Library of Medicine National Institute of Health., vol. 12, no. 469, 2021.
- [41] D. F. Nettleton, D. Katsantonis, A. Kalaitzidis, S. D. Natasa, P. Puigdollers, and R. Confalonieri, "Predicting rice blast disease: Machine Learning versus process-based models," *BMC Bioinformatics*., vol. 20, no. 514, pp. 1-16, 2019.
- [42] Rajendran, K., Jayabalan, M., Thiruchelvam, V. and Sivakumar, V., 2019. Feasibility study on data mining techniques in diagnosis of breast cancer. International Journal of Machine Learning and Computing, 9(3), pp.328-333.
- [43] K. Ahmed, T. R. Shahidi, S. M. I. Alam, and S. Momen, "Rice Leaf Disease Detection Using Machine Learning Techniques," 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI)., vol. 24, no. 25, pp. 1-5, 2019.
- [44] United Nation, "Food Production Must Double by 2050 to Meet Demand from World's Growing Population, Innovative Strategies Needed to Combat Hunger, Experts Tell Second Committee," *United Nations*, 2022. [Online]. Available:

https://www.un.org/press/en/2009/gaef3242.doc.htm#:~:text=Food%20p roduction%20must%20double%20by%202050%20to%20meet%20the%20demand,a%20panel%20discussion%20on%20%E2%80%9CNew. [Accessed 5 May 2022].