

26

International Journal of Data Science and Advanced Analytics

Vol: 02 Issue: 02

Abstract— Our research deals with Weapon-Target Assignment (WTA) problem which is a combinatorial optimization one that known

to be NP-complete. The WTA is an optimization problem focus on setting the best assignment of weapons to targets, to minimizing the

total expected value of the surviving targets. In this paper, we compared different methods of Z3 and Simulated Annealing (SA) to solve

the WTA problem and suggest a novel algorithm based on Deep Q Networks (DQN) method. The main advantage of the DQN algorithm

since we can learn in advance what is the optimal action for every space in short amount of time. Moreover, in real time the actual

assignment of weapon can be done in a lot shorter amount of time then in the SA algorithm and the Z3 as can be seen in the results

presented in this paper.

Keywords— Optimization, Weapon-Target Assignment, Deep Q Networks.

 Introduction and Motivation

The weapon-target assignment (WTA) is an NP-complete

combinatorial optimization problem. It aims to find the
assignment of weapons to target which minimizes the function

below [1]:

(i). 𝑓(𝜋) = ∑ 𝑣𝑖 (1 − Pij)
𝑥𝑖,𝑗𝑛

𝑖=1

(ii). s.t ∑ 𝑥𝑖𝑗

𝑛
𝑖=1 = 1, 𝑗 = 1, . . . , 𝑚, and 𝑥𝑖𝑗 ∈ {0,1}

Where v_(i)is the value of the target i, p_ijis the probability of
weapon j to destroy target i and x_ijis an indicator of the

assignment-1 if the weapon j is assigned to the target i and 0

otherwise.

Z3 as explained by L. M. de Moura and N. Bjørner [2] and by

Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson, and

Christoph Wintersteiger [3] is a state-of-the-art method solving

NP-complete constrained optimization problems such as the

WTA problem. Z3 treats the problem as a SAT problem. Z3

returns the exact solution to the optimization problem but as it

turned out. For WTA case, it only effective on small size

problems. Thus, heuristic methods such as SA are the preferred
solution for the problem. Simulated Annealing (SA) is an

effective heuristic algorithm for solving the WTA problem. It

can be used to solve many problems like the WTA. However, it

takes a lot of time to converge.

Deep Learning is used today to solve a wide range of problems

such as object detection in pictures and voice to text problems.

DQN is a Deep Learning method based on Q learning used to

solve a multi-agent’s problem that has a big state-action space

as described by Minih et al (2015) [4]. They also shown that

DQN is a powerful method for solving games. They used DQN

to solve 49 Atari 2600 games. They found it outperformed all

previous methods explored and achieved a comparable level to
the humans’ experts.

In this paper we developed DQN architecture and simulation

for the specific WTA problem, and compared the results to the

exact method Z3 and the SA algorithm. Simulations showed a
major advantage to our DQN algorithm dealing with WTA

problem.

 Related work

Sonuc, Sen, and Bayir [1] offered to use parallel calculations in

the GPU to speed up the calculation of the SA algorithm. The

parallel calculations used a technique called multi-start where

they used multi-start points and run the SA algorithm in parallel

threads in the GPU. The threads are divided into groups and at

the end of the run, they take the solution with the smallest f

value for each group. All the best solution from the blocks are

transferred to the CPU. Then the global best f value is found by
comparing the best solutions from all the blocks. Their solution

offers a significant speedup of the SA.

In this paper, however, we wanted to find a method to use

instead of the SA all together. Thus, we used the original SA

for comparison in order to check the performance of our

suggested solution which is the DQN algorithm.

The DQN algorithm was first introduced by Minih et al (2015)

[4] for learning policy from a high dimension input. They tested

it on Atari games and won against the existing methods on 49

games that were tested. They also discussed the instability in

the algorithm cause by correlation in the sequence of the
observation and the fact that small changes to Q can

significantly change the policy. They offered two ideas for

solving these problems. The first method is updating the target

network only after multiple iterations and not on every iteration.

This method solves the major changes to the policy because of

small changes in Q. The second method is using experience

replay which save the state action pairs from N recent iteration

and randomly select K pairs from the memory. By adding the

experience replay they handled the correlation problem. Both

of those adjustments were used in this paper.

High Level Mission Assignment Optimization

Using Deep Q Networks (DQN) Method Oren Gal1

Technion. Israel Institute of Technology, Haifa

orengal@technion.ac.il

Corresponding author email: orengal@technion.ac.il

27

International Journal of Data Science and Advanced Analytics

 Methods

SA Algorithm

The SA algorithm calculate f on a vector s were the locations

are the targets and the objects in these locations are the

weapons.

The algorithm works the following way [1]:

Inputs: Probabilities matrix P and values vector V

Steps:

1. Randomly choose the allocation of weapon (called S)

to target and calculate its f_new value.

2. While T>t_final:

a. Create a copy of S and randomly swap 2

weapons.

b. Calculate the f for the new s

c. If the swap improves f sufficiently:

i. S=copy of S

ii. f=f_new

d. If f_new<f_best:

i. f_best=f_new

ii. s_best=s_new

e. T=T*alpha

Sufficient improvement is when P(f, fnew, T) > random(0,1)

where for replacing weapons q and r:

𝑃(𝑓, 𝑓𝑛𝑒𝑤 , 𝑇) = {
1 𝑖𝑓 Δ𝑓 < 0

exp (−
𝛥𝑓

𝑇
) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝛥𝑓 = 𝑓 − 𝑓𝑛𝑒𝑤

= 𝑣𝑞 ∗ (𝑝𝑞𝑞 − 𝑝𝑟𝑞) + 𝑣𝑟 ∗ (𝑝𝑟𝑟 − 𝑝𝑞𝑟)

Z3 Algorithm

Z3 is a high-performance theorem prover developed at

Microsoft Research. Z3 is used in many applications such as

software/hardware verification and testing, constraint solving,

analysis of hybrid systems, security, biology (in silico analysis),

and geometrical problems [2]. One of its’ uses is solving a

constrained optimization problem like the WTA by treating the

problem as a SAT problem which Z3 knows how to solve. The

bigger the amount of targets the bigger the amount of

constraints the problem have and the longer it takes to solve it.
We tried to use the Z3 algorithm to solve our optimization

problem. We tested it on instances with values in the range of

10 to size*10+10 in jumps of ten and randomly generated

probabilities.

Q-Learning

We treat the WTA problem as a game were each state is an

allocation, actions are areas for choosing weapons to swap from

and the reward function is a variation of f.

Q-learning learns the action-value function Q(s, a): how good

to take any action at a particular state.

In a round k, for every state s we calculate target where R(s, a,

s’) is the reward from the transition to the state s’ using the

action ‘a’. Then we update the Q function [3].

𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑅(𝑠, 𝑎, 𝑠′) + 𝛾 ∗ max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)

𝑄𝑘+1(𝑠, 𝑎) = (1 − 𝛼)𝑄𝑘(𝑠, 𝑎) + 𝛼 ∗ 𝑡𝑎𝑟𝑔𝑒𝑡(𝑠′)

In this problem, the state-action space is too big to learn using

Q-learning. Therefore, we are going to use DQN.

DQN:

States- Our implementation uses a sequence as a state where

the location in the sequence is the target and the number in that

location is the weapon.

Actions- For a problem instance with size larger than we treat

the sequence as if it splits to groups of ten locations and group

of leftovers. Every action is either a swap between two weapons

in the same group or two weapons in different groups.

Reward Function- We use the opposite function to the one

described earlier because in DQN we maximize a reward

function and not minimize it [1].

𝑓(𝜋) = ∑ 𝑣𝑖 (Pij)
𝑥𝑖,𝑗

𝑛

𝑖=1

s.t ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 = 1, 𝑗 = 1, . . . , 𝑚, and 𝑥𝑖𝑗 ∈ {0,1}

Pseudocode for training DQN [3]:

1. Initialize replay memory to capacity N.

2. Initialize the neural networks of Policy and Target (In our

case the main layer is an attention neural network)

3. For episode= 1,…,M do:

a. Create a new probability matrix and values

vector. Initialize sequence of weapons target

allocations s1

b. For t=1,…,T do:

28

International Journal of Data Science and Advanced Analytics

i. With probability, 𝜺 select a random

action 𝑎𝑡 otherwise select the optimal

action according to the Policy neural

network. We decrease epsilon in every
run from 0.9 to 0.1 using the

equation:0.1 + 0.8/𝑒𝑥𝑝(−𝑠𝑡𝑒𝑝𝑠/
𝐸𝑑𝑒𝑐𝑎𝑦) where Edecay controls the

rate of the decrease.

ii. Execute action 𝑎𝑡 and observe the new

state and the reward from the transition.

iii. Store the new transition (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡)

in the replay memory

iv. Sample minibatch of B transitions from

the replay memory

v. Compute Q(𝑠𝑡 , a) - the model computes

Q(𝑠𝑡), then we select the columns of

actions taken. These are the actions

which would've been taken for each

batch state according to Policy

vi. Compute V(𝑠𝑡+1) for all next states.

Expected values of actions are

computed based on the "older" Target;

selecting their best reward.

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑄 = 𝑟𝑏𝑎𝑡𝑐ℎ + 𝑉(𝑠𝑡+1) ∗ 𝛾

vii. Compute Huber-Loss function:

𝐿𝛿(𝑎) = {

1

2
𝑎2 𝑓𝑜𝑟 |𝑎| ≤ 𝛿

𝛿 (|𝑎| −
1

2
𝛿) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where 𝑎 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑄 − 𝑄(𝑠𝑡 , 𝑎)

viii. Perform Gradient Descent on the

Huber-Loss function

ix. Update Policy with the new weights

x. For every C step Target=Policy

Parameters values used in the simulation were N=1000; M=40;

T=500; B=10; C=10, 𝛾=0.99; Edecay=500.

 Experiments Results

Z3 Limits:

Figure 1: Run time of Z3 as function of the targets amount.

As we can see in Figure 1, for sizes between two and four, the
algorithm works fine and takes a very little amount of time. For

sizes higher than five it keeps running for hours without results.

SA succeeds to converge to the optimal solution (with the same

f value as the Z3) in a little amount of time for these sizes

DQN vs SA on Random Examples:

We ran the model on a new random problem (new probability

matrix and values vector). We check performances on 10

different initial points randomly generated for every problem.

We used only one random problem for each targets amount. In

every iteration, we got an action according to the model and set

s to the best state (the state the maximize the reward or
minimize f) that the action could reach. We compared the result

at the end of all the iterations to the result from the SA algorithm

with different alpha values. The alpha values we used are

0.99,0.999,0.9999,0.99999. The bigger the alpha the more

iterations the SA algorithms do and accordingly the better the

solution the algorithm returns. I used T=1000 for all iterations.

29

International Journal of Data Science and Advanced Analytics

Figure 2: Average f as function of the targets’ amount for SA

with alpha=0.99,0.999,0.9999,0.99999 and the DQN algorithm.

As shown in Figure 2, for big sizes- 51,101,150 DQN shows

better results than SA for every alpha.

Figure 3: Average run-time of the algorithms as function of the

number of targets for SA with alpha=0.99,0.999, 0.9999,

0.99999 and the DQN algorithm.

As shown in Figure 3, it takes less or equal time to SA with

alpha=0.9999 and performs better than it. We only considered
the test time for each initial point for the DQN because the

training time doesn’t matter.

 Conclusions and Future Work

As we showed calculating the exact solution to the problem

becomes almost impossible for a problem with size five even

with a state-of-the-art algorithm such as Z3. Using Deep Q-

Learning yields results that are better than the results of the SA

algorithm for a shorter amount of time especially for large

problems. However, for size F SA algorithm works better and

reaches the optimum even for alpha=0.99 and as such is
recommended to use for small size problems. We checked the

algorithm for a limit group of possible sizes thus more checking

is required to determine exactly for what size it is better to use

DQN then to use the SA algorithm. For the sizes we checked

the advantage is really shown for sizes bigger or equal to 50.

The ratio of results to the times it takes to reach them improved

using DQN, but it is still very far from the ratio required for real

time use.

Recommendations for future work: (1) Check DQN on more

problem instances and find its’ limits. (2) Check more advance

versions of DQN such as Double DQN which also explained in
[3]. (3) Find a way to reduce the run time of DQN.

References
[1] Sonuc, Sen, and Bayir (2017) A Parallel Simulated Annealing Algorithm

for Weapon-Target Assignment Problem. In (IJACSA) International

Journal of Advanced Computer Science and Applications, Vol. 8, No. 4.

[2] L. M. de Moura and N. Bjørner (2008). Z3: An Efficient SMT Solver. In

 TACAS.

[3] Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson, and Christoph
Wintersteiger: Programming Z3. A tutorial published in Stanford

University Site.

[4] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski,

G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H.,
Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-

level control through deep reinforcement learning. Nature,

518(7540):529–533.

