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Abstract— Our research deals with Weapon-Target Assignment (WTA) problem which is a combinatorial optimization one that known 

to be NP-complete. The WTA is an optimization problem focus on setting the best assignment of weapons to targets, to minimizing the 

total expected value of the surviving targets. In this paper, we compared different methods of Z3 and Simulated Annealing (SA) to solve 

the WTA problem and suggest a novel algorithm based on Deep Q Networks (DQN) method. The main advantage of the DQN algorithm 

since we can learn in advance what is the optimal action for every space in short amount of time. Moreover, in real time the actual 

assignment of weapon can be done in a lot shorter amount of time then in the SA algorithm and the Z3 as can be seen in the results 

presented in this paper. 
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 Introduction and Motivation 

The weapon-target assignment (WTA) is an NP-complete 

combinatorial optimization problem. It aims to find the 
assignment of weapons to target which minimizes the function 

below [1]:  

 

 

(i).  𝑓(𝜋) = ∑ 𝑣𝑖 (1 − Pij)
𝑥𝑖,𝑗𝑛

𝑖=1  

 
(ii).  s.t  ∑ 𝑥𝑖𝑗

𝑛
𝑖=1 = 1, 𝑗 = 1, . . . , 𝑚, and 𝑥𝑖𝑗 ∈ {0,1}                                

 

Where v_(i )is the value of the target i, p_ijis the probability of 
weapon j to destroy target i and x_ijis an indicator of the 

assignment-1 if the weapon j is assigned to the target i and 0 

otherwise.  

Z3 as explained by L. M. de Moura and N. Bjørner [2] and by 

Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson, and 

Christoph Wintersteiger [3] is a state-of-the-art method solving 

NP-complete constrained optimization problems such as the 

WTA problem. Z3 treats the problem as a SAT problem. Z3 

returns the exact solution to the optimization problem but as it 

turned out. For WTA case, it only effective on small size 

problems. Thus, heuristic methods such as SA are the preferred 
solution for the problem. Simulated Annealing (SA) is an 

effective heuristic algorithm for solving the WTA problem. It 

can be used to solve many problems like the WTA. However, it 

takes a lot of time to converge. 

Deep Learning is used today to solve a wide range of problems 

such as object detection in pictures and voice to text problems. 

DQN is a Deep Learning method based on Q learning used to 

solve a multi-agent’s problem that has a big state-action space 

as described by Minih et al (2015) [4]. They also shown that 

DQN is a powerful method for solving games. They used DQN 

to solve 49 Atari 2600 games. They found it outperformed all 

previous methods explored and achieved a comparable level to 
the humans’ experts.  

In this paper we developed DQN architecture and simulation 

for the specific WTA problem, and compared the results to the 

exact method Z3 and the SA algorithm. Simulations showed a 
major advantage to our DQN algorithm dealing with WTA 

problem. 

 

 Related work 

Sonuc, Sen, and Bayir [1] offered to use parallel calculations in 

the GPU to speed up the calculation of the SA algorithm. The 

parallel calculations used a technique called multi-start where 

they used multi-start points and run the SA algorithm in parallel 

threads in the GPU. The threads are divided into groups and at 

the end of the run, they take the solution with the smallest f 

value for each group. All the best solution from the blocks are 

transferred to the CPU. Then the global best f value is found by 
comparing the best solutions from all the blocks. Their solution 

offers a significant speedup of the SA.  

In this paper, however, we wanted to find a method to use 

instead of the SA all together. Thus, we used the original SA 

for comparison in order to check the performance of our 

suggested solution which is the DQN algorithm. 

The DQN algorithm was first introduced by Minih et al (2015) 

[4] for learning policy from a high dimension input. They tested 

it on Atari games and won against the existing methods on 49 

games that were tested. They also discussed the instability in 

the algorithm cause by correlation in the sequence of the 
observation and the fact that small changes to Q can 

significantly change the policy. They offered two ideas for 

solving these problems. The first method is updating the target 

network only after multiple iterations and not on every iteration. 

This method solves the major changes to the policy because of 

small changes in Q. The second method is using experience 

replay which save the state action pairs from N recent iteration 

and randomly select K pairs from the memory. By adding the 

experience replay they handled the correlation problem. Both 

of those adjustments were used in this paper. 
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 Methods 

 

SA Algorithm 

The SA algorithm calculate f on a vector s were the locations 

are the targets and the objects in these locations are the 

weapons.  

The algorithm works the following way [1]: 

Inputs: Probabilities matrix P and values vector V  

Steps: 

1. Randomly choose the allocation of weapon (called S) 

to target and calculate its f_new value. 

2. While T>t_final: 

a. Create a copy of S and randomly swap 2 

weapons. 

b. Calculate the f for the new s 

c. If the swap improves f sufficiently: 

i. S=copy of S 

ii. f=f_new 

d. If f_new<f_best: 

i. f_best=f_new 

ii. s_best=s_new 

e. T=T*alpha 

 

Sufficient improvement is when P(f, fnew, T) > random(0,1) 

where for replacing weapons q and r: 

𝑃(𝑓, 𝑓𝑛𝑒𝑤 , 𝑇) = {
1 𝑖𝑓 Δ𝑓 < 0

exp (−
𝛥𝑓

𝑇
)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝛥𝑓 = 𝑓 − 𝑓𝑛𝑒𝑤 

= 𝑣𝑞 ∗ (𝑝𝑞𝑞 − 𝑝𝑟𝑞 ) + 𝑣𝑟 ∗ (𝑝𝑟𝑟 − 𝑝𝑞𝑟 ) 

 

Z3 Algorithm 

Z3 is a high-performance theorem prover developed at 

Microsoft Research. Z3 is used in many applications such as 

software/hardware verification and testing, constraint solving, 

analysis of hybrid systems, security, biology (in silico analysis), 

and geometrical problems [2]. One of its’ uses is solving a 

constrained optimization problem like the WTA by treating the 

problem as a SAT problem which Z3 knows how to solve. The 

bigger the amount of targets the bigger the amount of 

constraints the problem have and the longer it takes to solve it. 
We tried to use the Z3 algorithm to solve our optimization 

problem. We tested it on instances with values in the range of 

10 to size*10+10 in jumps of ten and randomly generated 

probabilities.  

Q-Learning 

We treat the WTA problem as a game were each state is an 

allocation, actions are areas for choosing weapons to swap from 

and the reward function is a variation of f. 

Q-learning learns the action-value function Q(s, a): how good 

to take any action at a particular state. 

In a round k, for every state s we calculate target where R(s, a, 

s’) is the reward from the transition to the state s’ using the 

action ‘a’. Then we update the Q function [3].  

𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑅(𝑠, 𝑎, 𝑠′) + 𝛾 ∗ max
𝑎′

𝑄𝑘(𝑠′, 𝑎′) 

𝑄𝑘+1(𝑠, 𝑎) = (1 − 𝛼)𝑄𝑘(𝑠, 𝑎) + 𝛼 ∗ 𝑡𝑎𝑟𝑔𝑒𝑡(𝑠′) 

In this problem, the state-action space is too big to learn using 

Q-learning. Therefore, we are going to use DQN. 

DQN: 

States- Our implementation uses a sequence as a state where 

the location in the sequence is the target and the number in that 

location is the weapon. 

Actions- For a problem instance with size larger than we treat 

the sequence as if it splits to groups of ten locations and group 

of leftovers. Every action is either a swap between two weapons 

in the same group or two weapons in different groups. 

Reward Function- We use the opposite function to the one 

described earlier because in DQN we maximize a reward 

function and not minimize it [1]. 

 

𝑓(𝜋) = ∑ 𝑣𝑖 (Pij)
𝑥𝑖,𝑗

𝑛

𝑖=1

 

s.t  ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 = 1, 𝑗 = 1, . . . , 𝑚, and 𝑥𝑖𝑗 ∈ {0,1} 

Pseudocode for training DQN [3]: 

1. Initialize replay memory to capacity N. 

2. Initialize the neural networks of Policy and Target (In our 

case the main layer is an attention neural network) 

3. For episode= 1,…,M do: 

a. Create a new probability matrix and values 

vector. Initialize sequence of weapons target 

allocations s1 

b. For t=1,…,T do: 
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i. With probability, 𝜺 select a random 

action 𝑎𝑡 otherwise select the optimal 

action according to the Policy neural 

network. We decrease epsilon in every 
run from 0.9 to 0.1 using the 

equation:0.1 + 0.8/𝑒𝑥𝑝(−𝑠𝑡𝑒𝑝𝑠/
𝐸𝑑𝑒𝑐𝑎𝑦)  where Edecay controls the 

rate of the decrease. 

ii. Execute action 𝑎𝑡  and observe the new 

state and the reward from the transition. 

iii. Store the new transition (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 ) 

in the replay memory 

iv. Sample minibatch of B transitions from 

the replay memory  

v. Compute Q(𝑠𝑡 , a) - the model computes 

Q(𝑠𝑡), then we select the columns of 

actions taken. These are the actions 

which would've been taken for each 

batch state according to Policy 

vi. Compute V(𝑠𝑡+1) for all next states. 

Expected values of actions are 

computed based on the "older" Target; 

selecting their best reward. 

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑄 = 𝑟𝑏𝑎𝑡𝑐ℎ + 𝑉(𝑠𝑡+1) ∗ 𝛾 

vii. Compute Huber-Loss function:  

𝐿𝛿(𝑎) = {

1

2
𝑎2  𝑓𝑜𝑟 |𝑎| ≤ 𝛿

𝛿 (|𝑎| −
1

2
𝛿) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝑎 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑄 − 𝑄(𝑠𝑡 , 𝑎) 

viii. Perform Gradient Descent on the 

Huber-Loss function 

ix. Update Policy with the new weights 

x. For every C step Target=Policy 

Parameters values used in the simulation were N=1000; M=40; 

T=500; B=10; C=10, 𝛾=0.99; Edecay=500. 

 

 

 

 

 

 Experiments Results 

 

Z3  Limits: 

 
  

Figure 1: Run time of Z3 as function of the targets amount. 

 

As we can see in Figure 1, for sizes between two and four, the 
algorithm works fine and takes a very little amount of time. For 

sizes higher than five it keeps running for hours without results. 

SA succeeds to converge to the optimal solution (with the same 

f value as the Z3) in a little amount of time for these sizes 

 

DQN vs SA on Random Examples: 

We ran the model on a new random problem (new probability 

matrix and values vector). We check performances on 10 

different initial points randomly generated for every problem. 

We used only one random problem for each targets amount. In 

every iteration, we got an action according to the model and set 

s to the best state (the state the maximize the reward or 
minimize f) that the action could reach. We compared the result 

at the end of all the iterations to the result from the SA algorithm 

with different alpha values. The alpha values we used are 

0.99,0.999,0.9999,0.99999. The bigger the alpha the more 

iterations the SA algorithms do and accordingly the better the 

solution the algorithm returns. I used T=1000 for all iterations. 
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Figure 2: Average f as function of the targets’ amount for SA 

with alpha=0.99,0.999,0.9999,0.99999 and the DQN algorithm. 

As shown in Figure 2, for big sizes- 51,101,150 DQN shows 

better results than SA for every alpha. 

  

 
Figure 3: Average run-time of the algorithms as function of the 

number of targets for SA with alpha=0.99,0.999, 0.9999, 

0.99999 and the DQN algorithm. 

 

As shown in Figure 3, it takes less or equal time to SA with 

alpha=0.9999 and performs better than it. We only considered 
the test time for each initial point for the DQN because the 

training time doesn’t matter. 

 

 Conclusions and Future Work 

 

As we showed calculating the exact solution to the problem 

becomes almost impossible for a problem with size five even 

with a state-of-the-art algorithm such as Z3. Using Deep Q-

Learning yields results that are better than the results of the SA 

algorithm for a shorter amount of time especially for large 

problems. However, for size F SA algorithm works better and 

reaches the optimum even for alpha=0.99 and as such is 
recommended to use for small size problems. We checked the 

algorithm for a limit group of possible sizes thus more checking 

is required to determine exactly for what size it is better to use 

DQN then to use the SA algorithm. For the sizes we checked 

the advantage is really shown for sizes bigger or equal to 50. 

The ratio of results to the times it takes to reach them improved 

using DQN, but it is still very far from the ratio required for real 

time use.  

Recommendations for future work: (1) Check DQN on more 

problem instances and find its’ limits. (2) Check more advance 

versions of DQN such as Double DQN which also explained in 
[3]. (3) Find a way to reduce the run time of DQN. 
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