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Abstract— Direct marketing such as telemarketing or mailing is an important method for companies to boost their business. Identifying 

the right proportion of target market could largely cut operational expense and improve efficiency.  In this research, a secondary dataset 

from a car insurance company will be used to study this problem of market targeting. Basing on existing literature study, three classifiers 

are picked, Naïve Bayesian, Decision Tree, and Neural Network. Some literature researches on each of the algorithm are conducted. 

Later modelling experiments are performed to predict whether the final customer will purchase the insurance or not. 

 
Keywords— Direct Marketing, Naïve Bayesian, Decision Tree, Neural Network 

  

 

 

 Introduction  

As a critical industry which is closely linked with the welfare 

of citizens’ everyday life, insurance has been given a high 

emphasis on economy building ever since 40 years ago. 

Nowadays, there are some major industrial challenges, 

insurance providers are facing [1]: 

Firstly, personalized advice and rapport customer interaction; 

Secondly, claiming process automation and optimization; 

Thirdly, detecting fraudulent claims; Fourthly, setting feasible 

policy premiums; Fifthly, locate high ranked potential 

customers for direct marketing.  

These problems faced by insurers will get a solution with the 
application of big data and machine learning algorithms [2]. As 

an intensively data-driven industry, insurance companies could 

employ the huge amount of data available about their existing 

customer and enrich that with other dimensions such as social 

media, transaction record and credit information of the 

customer, all even mobile data collected from the company 

website or mobile application. These all help insurance 

companies building up a multi-dimensional persona of their 

customer, which is the requisite for providing customized 

customer service and set up a more fitting insurance premium.   

This research is an attempt aiming to find the solution for the 
fifth challenge listed above. A secondary dataset collected by 

the Decision Science and Systems Chair of the Technical 

University of Munich. It is a real-world insurance company 

who called existing insurance customers up and intend to 

further sell them auto insurance. The final result whether the 

customer eventually subscripted car insurance is marked up as 

“success” or “failure” in the dataset.  

 

 Materials and Methods  

Concerning this problem of identifying potential customers by 

studying the customer demographic profile, there is a multitude 

of existing works did by researchers. Table 1 showcases a list 
of related work did as well as the algorithm they chose and the 

achieved predict accuracy. The last two are experiments did on 

the same dataset as this report, and the rest are using similar 

dataset aiming to find out the relationship between customer 

demographic profile and the final success rate of direct 
marketing.  

Basing on the algorithm they use for building the classifier, they 

can be roughly categorized into two groups – traditional 

statistical techniques, and machine learning algorithms. 

Statistical techniques are using mathematical formula to 

describe the relationship between variables, whilst machine 

learning techniques can learn from data without build up 

explicit rules and formula [3]. Will pick up three statistical 

techniques and two machine learning techniques to experiment 

in this report.  

 

2.1 Traditional Statistical Techniques 

2.1.1 Naive Bayesian 

The Bayesian theorem is developed in the 18th century by a 

mathematician called Thomas Bayes, it is a formula for 

calculating the conditional probability. The theorem provides a 

method to calculate the probability of an occurring event basing 

on other events which related to it. Naïve Bayesian is the simple 

version of it, given the naïve assumption that all the attributes 

provided are independent of each other. Although this 

assumption can seldom be fully satisfied, Naïve Bayesian still 

performs surprisingly well in comparison with other more 
sophisticated algorithms, especially when the correlation 

between variables is not that strong. Also, Naïve Bayesian is 

tested with higher accuracy compared with other algorithms 

even when dataset size is small. 

There are many ways to improve the accuracy of Naïve 

Bayesian model, for example, perform feature selection to form 

factor subsets which relatively independent of each other or use 

Kernelization selection on the attributes which are not normally 

distributed, or Laplacian Smoothing on the value of the attribute 

which has zero occurrences in the training dataset.  

In the experiment did by [4], and an accuracy of 67.9% is 

achieved when applying on deciding the target selection of 
direct marketing.  
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2.1.2 Decision Tree 

The decision tree is a data mining technique to build a 

predictive model for both classification and regression. The 

output of the decision tree would be a hierarchical simulation 
of the flow of decision making. The purpose of the 

classification decision tree is to classify an instance into 

predefined classes basing on other related factors/ attributes [5]. 

In our case, the decision tree is used to define whether the 

subject customer would like to subscribe to the car insurance 

basing on its demographic profile.  

The process of building the decision tree is a recursive 

procedure. It will start from a “root” node, then further split into 

two or more sub-nodes basing on one attribute or more. The 

sequence for picking up the decision-making attribute is 

depending on the weight of attribute. The operation will repeat 

until an utmost homogeneity is reach at the sub-node, which is 
called as the “leaf”. Each path from the root of the tree till the 

end of its leaf can be interpreted into a rule. Given this, analysts 

could apply the “tree” with a new instance or dataset, and 

predict the probability it can be turned into a customer (by 

sorting the attribute value of the customer down the decision 

tree), and understand the proportion of potential customer rate 

out of the given dataset. [5]  

The decision tree has its advantages of simplicity and easy to 

interpret compared with other algorithms. Usually, a 

classification tree can be depicted in a hierarchical graphic way, 

however, when the complexity of the classification tree getting 
too high (too many nodes and high tree depth), this graphical 

way will not be that helpful. Therefore, in decision tree method, 

it is necessary to keep the tree pruned as long as the tree can 

yield the upmost predictive accuracy.  

In the experiment [6] built up Decision tree model and Naïve 

Bayesian model for the predicting of the likelihood of positive 

response from direct marketing. In their case, the decision tree 

provided a very good performance of 93.96% of accuracy, 

while Naïve Bayesian provides the accuracy of 84.91%. 

 

2.1.3 Support Vector Machines (SVM)  

Comparing with Decision Tree, SVM is more flexible because 
no a priori restriction is required in SVM. Besides, comparing 

with a traditional statistical model such as Linear Regression, 

SVM could cope with linear as well as complex nonlinear 

problems. Because of its flexibilities, SVM can produce higher 

prediction accuracy, but the downside is the output of the model 

is more complex to interpret for human understanding than 

Decision Tree [6]. 

SVM is a binary classifier which can transform an input dataset 

into a high dimensional data by choosing a kernel and using 

nonlinear mapping. The SVM then identify the best separating 

hyperplane which splits the two classes. Before performing 
SVM modelling, usually, the dataset is standardized and 

normalized with a mean of zero and a standard deviation of one.  

There are two mandatory parameters when using SVM, C and 

gamma. By changing the value of these two parameters, the 

model can be tuned with optimized performance. C parameter 

is the trade-off between the smooth decision boundary and 

classifying training points correctly, while the gamma value 

indicates how far the influence of a single training example 

reaches. [7]  

There are two methods to interpret the result of SVM, one is 

through rule extraction and the other is by sensitivity analysis. 
Rule extraction is referring to utilizing white box approaches 

such as decision tree to understand black-box approaches such 

as SVM, and the sensitivity analysis works by analysing the 

output of the model when the input is varying within the domain 

range.  

One study did a comparison study of four different 

classification models with a dataset collected from a Portuguese 

retail bank. This is a high-dimensional dataset with 150 

attributes related to the client’s bank account and social-

economic attributes. A feature selection process is performed 

and cuts down the dataset with only 22 most related features. 

Then logistic regression, decision tree, neural network and 
support vector machine are applied on the dataset. Receiver 

Operating Curve (ROC) and the area of the LIFT cumulative 

curve (ALIFT) are used as evaluation metrics. SVM is proved 

with the second-best performance, an accuracy of 76.7% 

following the best performance model generated by a neural 

network with an accuracy of 79.4%. 

 

2.2 Machine Learning Algorithms 

2.2.1 Neural Network (NN) 

Another powerful classifier is NN. As in the research of [9] NN 

generated the best prediction result comparing with the rest 
three. To further power up the prediction accuracy of the model, 

the same researcher conducted another research (Moro et al., 

2014b). By combining historical transaction data, and 

conducting further feature engineering, Neural Network model 

yielded a significantly improved performance, AUC = 0.86 and 

ALIFT = 0.70.   

NN, usually referred to as Artificial Neural Network (ANN), is 

a biologically inspired algorithm which is intended to simulate 

the way how our human brain works. NN is usually organized 

in layers. Each of the inputs is related to a neuron, and also the 

weight matrix is calculated. The layer includes weight matrix 

as well as neurons. The final output is the output layer. There 
are one or more hidden layers which transform the input into 

something that could be used by the output layer. [10] 

The limitations of NN are, for one thing, it requires high 

computational power to train the network, for another thing is 

it is a “black box”, in which researchers could only feed in data 

and study the output. There are some techniques can be used to 

fine-tune the output but cannot access to the core of decision-

making process.  

To solve this one study attempted to extract explanatory 

knowledge from the NN model by using a sensitivity analysis 

method, which can list out the rank of the inputs basing on the 
weight of the attribute, and test for the influence of the input on 

the data-driven model [9].  
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2.2.2 Extreme Gradient Boosting (XGBoost) 

XGBoost is an optimized library of gradient boosting. 

According to the work of [11], it is a greedy machine learning 

technique for regression and classification. It could generate an 
optimized prediction model by rectifying a weak performing 

model. (Chen and Guestrin, 2016) has taken the theory one step 

further, they introduced a highly scalable end-to-end tree 

boosting algorithm and termed it as “XGBoost”.  

It is one of the most favourited algorithms used by Kaggle 

winner solutions [13] because it is fast in computation and 

usually perform with higher accuracy.  

XGBoost could fully utilize the resource of a machine to 

achieve the capability of scaling. Besides processor and 

memory, it also utilizes disk space to process data. Two 

techniques are applied to achieve this: block compression and 

block sharding. The first technique compresses the rows and 
columns on the fly and the second technique distribute the data 

onto different disks and increase the efficiency of data 

processing and reading. (Chen and Guestrin, 2016) 

XGBoost is an open-source package and is implemented 

available in python and R and some other popular programming 

language. Also, due to its scalability characteristic, XGBoost 

can compliant with Hadoop natively. Very recently, it extended 

compliance with JVM platforms such as Spark and Flink. (Chen 

and Guestrin, 2016) 

In both of the previous attempts try to solve this direct 

marketing cold call challenge, XGBoost yielded the best 
performance comparing with all rest algorithms, with 

significantly high accuracy of 85% [14][15]. 

 

2.3 Data Overview 

The dataset used in this research is collected by the Technical 

University of Munich, from real-world data from a bank in the 

United States. This bank intends to extend car insurance service 

to its existing customers. This bank organizes regular 

campaigns to extend its customer base. “Previous Attempt” 

attribute in the dataset indicating whether this customer has 

been contacted in the previous campaign and also the outcome 

is indicated in “outcome” attribute, with “1” indicating success 
and “0” indicating fail. This dataset has 4000 labelled records, 

and 18 input dimensions. Eleven of these variables are character 

type and seven of them are numeric type (see in Table 1). The 

output variable CarInsurance is binary (0 and 1) as for 

indicating whether the customer will eventually purchase the 

insurance. There are two major parts of information included in 

this dataset: One is customer’s demographic information 

including - age, job, marital, education level, credit status, 

yearly balance so on so forth, another part is derived directly 

from the company’s interaction record with the customer 

including communication method, last contact month, last 
contact day, call start and end time, days have passed since the 

previous contact and also the result when last time approach to 

this customer.  

 

 

Table 1 Variable Type 

No. Column Type 

1 Id categorical 

2 Age numeric 

3 Job categorical 

4 Marital categorical 

5 Education categorical 

6 Default categorical 

7 Balance numeric 

8 HHInsurance categorical 

9 CarLoan categorical 

10 Communication categorical 

11 LastContactDay categorical 

12 LastContactMonth categorical 

13 NoOfContacts numeric 

14 DaysPassed numeric 

15 PrevAttempts numeric 

16 Outcome categorical 

17 CallStart numeric 

18 CallEnd numeric 

19 CarInsurance categorical 

 

 

 Results and Discussion  

 

3.1 Naïve Bayesian 

Naïve Bayesian model is built using “e1071” package. Firstly, 

a baseline model is built, then, “caret” package is combined for 

automatic model tuning, and lastly, a comparison model with 

one highly correlated variable dropped is built.  

a. baseline model 

Instead of the target variable, all rest of the variables are used 

to predict the target. The accuracy achieved is 0.7603 and AUC 

is 0.732 (see in Figure 1 and Figure 2). Also, kappa statistic 

value, which is denoted as kappa in confusion matrix output, is 

also referred to as an adjusted accuracy, taking into account the 
possibility of a correct prediction by chance along. The de facto 

standard for interpreting Kappa value is as follows: 

• Poor prediction: < 0.2 

• Fair prediction: between 0.2 and 0.4 

• Moderate prediction: between 0.4 and 0.6 

• Good prediction: between 0.6 and 0.8 

• Very good prediction: 0.8 to 1 

As indicated from the confusion matrix, Kappa value for the 

baseline model is 0.482, therefore, can conclude this is a 
moderate performing model. Since this is the basic model 

without any tuning, this result is expectable.  
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Figure 1 confusion matrix output 

 
 

Figure 2 AUC 

b. hyperparameter tuning with caret 

“caret” package offers some parameter tuning. To look up what 
parameter can be managed by “caret”, modelLookup() function 

can be used. For naïve_bayes model, three parameters are 

offered for tuning, laplace, usekernel, and adjust. As seen in 

Figure 3, will set the range for grid searching. Although as 

understand from data exploration, laplace is not required since 

there is no class showing zero probability, and kernel is required 

since all the numeric variables are not following Gaussian 

distribution, will still run grid search to validate the assumption.  

 
Figure 3 parameter setting 

Part of the result is showing in Figure 4. As can tell from the 

final output, final optimized parameters are identified as laplace 

= 0, usekernel = TRUE and adjust = 0, which is in accordance 

with the assumption beforehand. Then, will apply the optimized 
parameter achieved to the initial model without any parameter 

tuning. An accuracy of 76.06% is obtained, no significant 

improvement found comparing with baseline model. 

 
 

Figure 4 grid search for naïve Bayes 

c. dropping off one high-correlated variable 

As identified in the correlation matrix, two strongly correlated 

variables are: DaysPassed and PrevAttempts. To compare 

which of these two variables has a higher impact on the 

prediction model, will compute the correlation between each of 

them and the target variable. As seen in Figure 5, actually both 

of them has a weak impact on prediction, and DaysPassed 

showed even lower influence, therefore, decide to drop 

DaysPassed.  

The result is shown in Figure 6, the accuracy of 0.7487 and 
0.754 are achieved, which is slightly lower than the baseline 

model.  
Figure 5 correlation calculation 

 
Figure 6 confusion matrix output 

3.2 Decision Tree 

In the first decision tree, “rpart” package is used. Like in Naïve 

Bayes, firstly, a baseline without any tuning will be built, then 

three extra experiments are attempted: 
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Table 2 Packages and the usage for building Decision Tree 

No. experiments Package Model 

1 change parameter minsplit, minbucket 

rpart 
Decision 

Tree 
2 use caret to tune cp 

3 change split method - entropy 

 

Experiment 1: minsplit, minbucket are tuned to prune the tree.  

Minsplit - the minimum number of observations that must exist 

in a node  

Minbucket - the minimum number of observations in any 

terminal <leaf> node.  

Therefore, a small number choice of minsplit, minbucket will 

lead to complexed tree, whilst large number of minsplit, 

minbucket will get the tree pruned.  

Experiment 2: use “caret” to tune cp.  

cp is the complexity parameter; this is used to prune the 
complexity of the tree.  

Experiment 3: change split method to “entropy” 

Since the default split method is Gini, will change it to 

“entropy” as experiment on prediction accuracy.  

a. baseline model 

The baseline model is generated, and prediction method is 

chosen as “class”. Use print(tree) function can print out the 

rules of the tree. As can tell from the result, the root has 3000 

instances, with a proportion of 0.599 and 0.401 for class 

distribution. The first variable chosen is CallLast, which split 

the tree by 2037 versus 963. On the node CallLast < 0.00424, 

the purity is 0.7540, whilst on the node of CallLast > 0.00424 
the purity is 0.7289. Next, Outcome, LastContactMonth and 

HHInsurance are selected in the following steps. As noticed, 

totally four variables are used in building the tree: CallLast, 

Outcome, LastContactMonth and HHInsurance. Figure 7 is the 

visualization of the decision tree.  

The accuracy for this baseline tree is achieved as 0.8173for 

training data and 0.811 for testing data. As tell from the 

confusion matrix output in Figure 8, the Kappa value also 

increase to 0.6285 from Naïve Bayes. This indicates the 

decision tree built is a fairly good prediction. 

Figure 7 decision tree rules 

 
Figure 8 confusion matrix for decision tree 

b. change parameter minsplit, minbucket 

Figure 9 is showing the code for tuning the parameter minsplit, 

minbucket. In this situation minimum split is defined as 10 and 
minimum bucket as 40, also complexity value is set as 0. 

Prediction result is showing 0.8347 of accuracy on training data 

and 0.818 accuracies on test data, which are both slightly better 

than baseline. 

 
Figure 9 change parameter minsplit, minbucket 

c. use “caret” to tune cp 

By using plotcp() function, can plot out the complexity of the 

existing decision tree. As can tell from Figure 10, when the 

complexity of the tree is roughly between 0.01 and 0.02, the 

tree is showing a relatively good performance, with low error 
rate and adequate tree size. Therefore, in grid search value is 

selected between -1 and 2, with a step of 0.01. The search result 

is shown with optimized cp identified as 0.  

 
Figure 10 complexity plot 

d. Split method change to entropy 

Since the default split method is Gini, will try with Entropy split 

method and see whether there will be an improvement on 

performance. The accuracy is achieved as 0.6517 for training 

data and 0.796 for testing data.  
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3.3 Decision Tree with boosting 

The second decision tree is built using “C50” package. 

Comparing with “rpart”, “C50” offers the option to tune the 

parameter trials, which enables a boosting procedure. This 

method is very similar to other boosting tree methods such as 

AdaBoost.  

As seen in Figure 11, the trial is specified as 10, this means 10 

decision trees will be used in the boosted team for getting an 

optimized tree. According to the previous research result, the 
estimated improvement in prediction error rate is about 25%.  

According to the confusion matrix for training and testing data, 

in this research, the boosting tree significantly increased 

training dataset prediction accuracy, but the effect on the testing 

set is not that significant. However, overall accuracy increased 

to 0.8796 from 0.8551.   

 
Figure 11 trial parameter tuning 

3.4 Neural Networks  

Neural networks algorithm can be used to do regression as well 

as classification. The strong point about neural networks is that 

it does not have any a priori assumption in the dataset. It is 

flexible to apply and can generate very good prediction result if 

tuned well. However, the drawback is the computational time it 

takes to train the neural is significantly higher than the previous 

models.  
 

a. baseline model with one hidden layer and one neuro 

Package “neuralnet” is used to train a basic neural network. As 

seen in below Figure 12, parameter hidden is specified as 1, 

indicating this is a neural network with one hidden l layer and 

one single neuro.  

 

 
Figure 12 baseline for neural network 

The result in Figure 13 is showing, the training process is not 

converging, and the max steps has exceeded. Therefore, to 

solve this problem has to increase the complexity of the model, 

this means either has to add-in extra hidden layer or hidden 
neurons.  

 

 

 

 

 
Figure 13 result for single neuro neural network 

b. A neural network with 3 neurons 

The second model is built with 3 neurons in one hidden layer. 

This time, the training process managed to converge. With 
roughly 2 mins training time. Then, by applying the plot() 

function, the final network structure can be generated. As seen 

in Figure 14, as expected, there is one hidden layer between the 

input layer and the output layer. Each of the input variables is 

taken as one input neuron and the final prediction is generated 

with output neuro. Weights are calculated between each input 

neuro and each of the neuro in the hidden layer.  

Then, this trained model is applied to training and testing data 

to compute the prediction. The output of the neural network is 

a value between 0 and 1. An activation function is defined as 

less than 0.5 then categorized as 0, and greater than 0.5, then 

classed as 1.  
Then confusion matrix for training and testing data is calculated 

showing the accuracy of both training and testing data is very 

low, 0.677 and 0.569 respectively.  

 

c. grid search with caret 

Same as in decision tree and naïve Bayes, “caret” package is 

used to tune the parameters. The size is referring to the number 

of neurons in the hidden layer, and the decay parameter is 

referring to the weight. As seen in Figure 14, grid search is set 

with size and decay specified as below.  

 

 
Figure 14 grid search for the neural network 

Then the grid search is applied to train the model. The result 

and tuning code is shown in Figure 15. An optimized number 

of 6 neuro is suggested with a decay of 0.2.  

 

 
Figure 15 tuning code and result 

d. building the neural network with optimized tuning parameter 

Next, an optimized neural network is built with parameters 

found in grid-search. The final accuracy for training and testing 
data is achieved as 0.6366 and 0.646, which is slightly better 

than the previous model but still performing very poor. Also, it 

is noticed that the training time consumed as raised to 5.12 

mins.  
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Figure 16 neural network structure

3.5 Analysis of the Evaluation 

a. There are three algorithms picked, and four models are built 

in the previous experiment section. As shown in Table 3, the 

best performing model without any further effort on tuning is 
the decision tree model, which reaches an average accuracy of 

0.8551. This result also matches with the findings in the 

previous literature review study. Many of the researches shown 

that decision tree can generate relatively good prediction in the 

classification task. One experiment did on the same dataset 

using the decision tree, also generated an accuracy of 0.82.  
Naïve Bayesian is providing moderating prediction accuracy, 

not as good as decision tree, but generally acceptable. Whilst 

the ANN model has shown performance relatively low, which 

might due to the lack of training and low complexity of the 

model.  

 
Table 3 Baseline model comparison for all models 

b. The result after grid-search  

 For each of the model, “caret” package is used to do automatic 

tuning of the model. Except for the Naïve Bayesian model 

which remained almost the same as the baseline, all rest models 

are showing slight improvement. However, ANN is still giving 

poor performance. This might due to the learning rate set in 

grid-search, has not reached the optimized combination for 

ANN to give a good performance.  

 
Table 4 Optimized models with tuned parameters 

 

 

c. additional experiments 

There are some additional experiments did together with the 

baseline model as a comparison. In Decision Tree1, an 
experiment is done on changing the split index from Gini to 

Entropy as well as altering the parameter value for minsplit, 

minbucket. In both of the experiments, no significant 

improvements noticed. This might be caused by the minsplit, 

minbucket manually set by us is not the optimized ones. Further 

experiments required on tuning this.  

Decision Tree2, with boosting is the best performing one, which 

is showing accuracy at 92.63% for training data and 83.3% for 

testing data. Although the average performance still very good, 
but the drop from above 90 to 83 also indicates the drawback of 

the decision tree, that it could generate high accuracy model 

base on training data but result in overfitting and cause higher 

error rate in testing data.  

The last one is on dropping one highly correlated variable from 

the dataset. This might due to the reason there are only 19 input 

    baseline 

No. Model 

Train - 

Accuracy Test - Accuracy 

Average - 

Accuracy 

1 Naïve Bayes 0.7603 0.772 0.76615 

2 decision tree1 0.8173 0.811 0.81415 

3 decision tree2 0.8913 0.819 0.85515 

4 ANN 0.6773 0.569 0.62315 

No. Model 

Train - 

Accuracy 

Test - 

Accuracy 

Average 

- 

Accuracy 

optimized 

parameter 

1 naiveBayes 0.7603 0.761 0.76065 

laplace = 0, 

usekernel = 

TRUE and 

adjust = 0 

2 

decision 

tree1 0.8347 0.818 0.82635 cp = 0 

3 

decision 

tree2 0.8893 0.848 0.86865 

trials = 30, 

model = 

rules and 

winnow 

 = FALSE 

4 ANN 0.6366 0.646 0.6413 

size = 6 and 

decay = 0.2 
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variables when dropping one variable, more information is 

losing than the prediction strength gained by the algorithm. 

 

 
Table 5 addition experiments on the model 

 

 Conclusions  

As the result shown in experiments and comparison analysis 

did, it is noticeable that for this dataset when applying 

classification prediction, the decision tree can provide more 

steady performance. As an attempt to optimize the decision tree 

model, the trial parameter is used to build a boosting tree. This 
largely increased the accuracy of prediction for training data to 

92.63%, however, the testing dataset is not performing similarly 

well, only generating accuracy of 83.3%. This unveils the 

drawback of the decision tree that it is prone to overfitting. The 

advantage of the decision tree is that it is also easy to interpret 

and can be interpreted as rules. In the rule generated in this 

decision tree as shown in Figure 23, variables are selected 

according to their significance to the prediction model. 

Therefore, four important variables achieved. These four 

variables can be used, to build a more concise model instead of 

all the original input variable from the dataset. In this sense, the 

decision tree can be used for feature reduction.  
ANN is showing low prediction rate, which might due to the 

complexity of the model. The first model we built is with 3 

neurons, when increased that to 6 neurons, the performance 

slightly increased, but still not satisfying.  

 Further experiments are required on grid searching more 

optimized hyperparameter to fit the model well for ANN, and 

also pruning the decision tree complexity to solve the problem 

of overfitting.  
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No. experiments Package Model 
Train - 

Accuracy Test - Accuracy Average - Accuracy 

1 change parameter minsplit , minbucket rpart 
Decision Tree1 

- - - 

2 change split method - entropy rpart 0.6517 0.796 0.72385 

3 boost tree C50 Decision Tree2 0.9263 0.833 0.87965 

4  drop high-correlated variable e1071 Naïve Bayes 0.7487 0.754 0.75135 


