

18

International Journal of Data Science and Advanced Analytics

Vol: 02 Issue: 02

Abstract— Direct marketing such as telemarketing or mailing is an important method for companies to boost their business. Identifying

the right proportion of target market could largely cut operational expense and improve efficiency. In this research, a secondary dataset

from a car insurance company will be used to study this problem of market targeting. Basing on existing literature study, three classifiers

are picked, Naïve Bayesian, Decision Tree, and Neural Network. Some literature researches on each of the algorithm are conducted.

Later modelling experiments are performed to predict whether the final customer will purchase the insurance or not.

Keywords— Direct Marketing, Naïve Bayesian, Decision Tree, Neural Network

 Introduction

As a critical industry which is closely linked with the welfare

of citizens’ everyday life, insurance has been given a high

emphasis on economy building ever since 40 years ago.

Nowadays, there are some major industrial challenges,

insurance providers are facing [1]:

Firstly, personalized advice and rapport customer interaction;

Secondly, claiming process automation and optimization;

Thirdly, detecting fraudulent claims; Fourthly, setting feasible

policy premiums; Fifthly, locate high ranked potential

customers for direct marketing.

These problems faced by insurers will get a solution with the
application of big data and machine learning algorithms [2]. As

an intensively data-driven industry, insurance companies could

employ the huge amount of data available about their existing

customer and enrich that with other dimensions such as social

media, transaction record and credit information of the

customer, all even mobile data collected from the company

website or mobile application. These all help insurance

companies building up a multi-dimensional persona of their

customer, which is the requisite for providing customized

customer service and set up a more fitting insurance premium.

This research is an attempt aiming to find the solution for the
fifth challenge listed above. A secondary dataset collected by

the Decision Science and Systems Chair of the Technical

University of Munich. It is a real-world insurance company

who called existing insurance customers up and intend to

further sell them auto insurance. The final result whether the

customer eventually subscripted car insurance is marked up as

“success” or “failure” in the dataset.

 Materials and Methods

Concerning this problem of identifying potential customers by

studying the customer demographic profile, there is a multitude

of existing works did by researchers. Table 1 showcases a list
of related work did as well as the algorithm they chose and the

achieved predict accuracy. The last two are experiments did on

the same dataset as this report, and the rest are using similar

dataset aiming to find out the relationship between customer

demographic profile and the final success rate of direct
marketing.

Basing on the algorithm they use for building the classifier, they

can be roughly categorized into two groups – traditional

statistical techniques, and machine learning algorithms.

Statistical techniques are using mathematical formula to

describe the relationship between variables, whilst machine

learning techniques can learn from data without build up

explicit rules and formula [3]. Will pick up three statistical

techniques and two machine learning techniques to experiment

in this report.

2.1 Traditional Statistical Techniques

2.1.1 Naive Bayesian

The Bayesian theorem is developed in the 18th century by a

mathematician called Thomas Bayes, it is a formula for

calculating the conditional probability. The theorem provides a

method to calculate the probability of an occurring event basing

on other events which related to it. Naïve Bayesian is the simple

version of it, given the naïve assumption that all the attributes

provided are independent of each other. Although this

assumption can seldom be fully satisfied, Naïve Bayesian still

performs surprisingly well in comparison with other more
sophisticated algorithms, especially when the correlation

between variables is not that strong. Also, Naïve Bayesian is

tested with higher accuracy compared with other algorithms

even when dataset size is small.

There are many ways to improve the accuracy of Naïve

Bayesian model, for example, perform feature selection to form

factor subsets which relatively independent of each other or use

Kernelization selection on the attributes which are not normally

distributed, or Laplacian Smoothing on the value of the attribute

which has zero occurrences in the training dataset.

In the experiment did by [4], and an accuracy of 67.9% is

achieved when applying on deciding the target selection of
direct marketing.

Machine Learning Application in Car Insurance Direct Marketing

CHENG XiaoTian 1
1 School of Computing, Asia Pacific University of Technology & Innovation. Kuala Lumpur, Malaysia
1 cxtalex@foxmail.com

Corresponding author email: cxtalex@foxmail.com

19

International Journal of Data Science and Advanced Analytics

Vol: 02 Issue: 02

2.1.2 Decision Tree

The decision tree is a data mining technique to build a

predictive model for both classification and regression. The

output of the decision tree would be a hierarchical simulation
of the flow of decision making. The purpose of the

classification decision tree is to classify an instance into

predefined classes basing on other related factors/ attributes [5].

In our case, the decision tree is used to define whether the

subject customer would like to subscribe to the car insurance

basing on its demographic profile.

The process of building the decision tree is a recursive

procedure. It will start from a “root” node, then further split into

two or more sub-nodes basing on one attribute or more. The

sequence for picking up the decision-making attribute is

depending on the weight of attribute. The operation will repeat

until an utmost homogeneity is reach at the sub-node, which is
called as the “leaf”. Each path from the root of the tree till the

end of its leaf can be interpreted into a rule. Given this, analysts

could apply the “tree” with a new instance or dataset, and

predict the probability it can be turned into a customer (by

sorting the attribute value of the customer down the decision

tree), and understand the proportion of potential customer rate

out of the given dataset. [5]

The decision tree has its advantages of simplicity and easy to

interpret compared with other algorithms. Usually, a

classification tree can be depicted in a hierarchical graphic way,

however, when the complexity of the classification tree getting
too high (too many nodes and high tree depth), this graphical

way will not be that helpful. Therefore, in decision tree method,

it is necessary to keep the tree pruned as long as the tree can

yield the upmost predictive accuracy.

In the experiment [6] built up Decision tree model and Naïve

Bayesian model for the predicting of the likelihood of positive

response from direct marketing. In their case, the decision tree

provided a very good performance of 93.96% of accuracy,

while Naïve Bayesian provides the accuracy of 84.91%.

2.1.3 Support Vector Machines (SVM)

Comparing with Decision Tree, SVM is more flexible because
no a priori restriction is required in SVM. Besides, comparing

with a traditional statistical model such as Linear Regression,

SVM could cope with linear as well as complex nonlinear

problems. Because of its flexibilities, SVM can produce higher

prediction accuracy, but the downside is the output of the model

is more complex to interpret for human understanding than

Decision Tree [6].

SVM is a binary classifier which can transform an input dataset

into a high dimensional data by choosing a kernel and using

nonlinear mapping. The SVM then identify the best separating

hyperplane which splits the two classes. Before performing
SVM modelling, usually, the dataset is standardized and

normalized with a mean of zero and a standard deviation of one.

There are two mandatory parameters when using SVM, C and

gamma. By changing the value of these two parameters, the

model can be tuned with optimized performance. C parameter

is the trade-off between the smooth decision boundary and

classifying training points correctly, while the gamma value

indicates how far the influence of a single training example

reaches. [7]

There are two methods to interpret the result of SVM, one is

through rule extraction and the other is by sensitivity analysis.
Rule extraction is referring to utilizing white box approaches

such as decision tree to understand black-box approaches such

as SVM, and the sensitivity analysis works by analysing the

output of the model when the input is varying within the domain

range.

One study did a comparison study of four different

classification models with a dataset collected from a Portuguese

retail bank. This is a high-dimensional dataset with 150

attributes related to the client’s bank account and social-

economic attributes. A feature selection process is performed

and cuts down the dataset with only 22 most related features.

Then logistic regression, decision tree, neural network and
support vector machine are applied on the dataset. Receiver

Operating Curve (ROC) and the area of the LIFT cumulative

curve (ALIFT) are used as evaluation metrics. SVM is proved

with the second-best performance, an accuracy of 76.7%

following the best performance model generated by a neural

network with an accuracy of 79.4%.

2.2 Machine Learning Algorithms

2.2.1 Neural Network (NN)

Another powerful classifier is NN. As in the research of [9] NN

generated the best prediction result comparing with the rest
three. To further power up the prediction accuracy of the model,

the same researcher conducted another research (Moro et al.,

2014b). By combining historical transaction data, and

conducting further feature engineering, Neural Network model

yielded a significantly improved performance, AUC = 0.86 and

ALIFT = 0.70.

NN, usually referred to as Artificial Neural Network (ANN), is

a biologically inspired algorithm which is intended to simulate

the way how our human brain works. NN is usually organized

in layers. Each of the inputs is related to a neuron, and also the

weight matrix is calculated. The layer includes weight matrix

as well as neurons. The final output is the output layer. There
are one or more hidden layers which transform the input into

something that could be used by the output layer. [10]

The limitations of NN are, for one thing, it requires high

computational power to train the network, for another thing is

it is a “black box”, in which researchers could only feed in data

and study the output. There are some techniques can be used to

fine-tune the output but cannot access to the core of decision-

making process.

To solve this one study attempted to extract explanatory

knowledge from the NN model by using a sensitivity analysis

method, which can list out the rank of the inputs basing on the
weight of the attribute, and test for the influence of the input on

the data-driven model [9].

20

International Journal of Data Science and Advanced Analytics

Vol: 02 Issue: 02

2.2.2 Extreme Gradient Boosting (XGBoost)

XGBoost is an optimized library of gradient boosting.

According to the work of [11], it is a greedy machine learning

technique for regression and classification. It could generate an
optimized prediction model by rectifying a weak performing

model. (Chen and Guestrin, 2016) has taken the theory one step

further, they introduced a highly scalable end-to-end tree

boosting algorithm and termed it as “XGBoost”.

It is one of the most favourited algorithms used by Kaggle

winner solutions [13] because it is fast in computation and

usually perform with higher accuracy.

XGBoost could fully utilize the resource of a machine to

achieve the capability of scaling. Besides processor and

memory, it also utilizes disk space to process data. Two

techniques are applied to achieve this: block compression and

block sharding. The first technique compresses the rows and
columns on the fly and the second technique distribute the data

onto different disks and increase the efficiency of data

processing and reading. (Chen and Guestrin, 2016)

XGBoost is an open-source package and is implemented

available in python and R and some other popular programming

language. Also, due to its scalability characteristic, XGBoost

can compliant with Hadoop natively. Very recently, it extended

compliance with JVM platforms such as Spark and Flink. (Chen

and Guestrin, 2016)

In both of the previous attempts try to solve this direct

marketing cold call challenge, XGBoost yielded the best
performance comparing with all rest algorithms, with

significantly high accuracy of 85% [14][15].

2.3 Data Overview

The dataset used in this research is collected by the Technical

University of Munich, from real-world data from a bank in the

United States. This bank intends to extend car insurance service

to its existing customers. This bank organizes regular

campaigns to extend its customer base. “Previous Attempt”

attribute in the dataset indicating whether this customer has

been contacted in the previous campaign and also the outcome

is indicated in “outcome” attribute, with “1” indicating success
and “0” indicating fail. This dataset has 4000 labelled records,

and 18 input dimensions. Eleven of these variables are character

type and seven of them are numeric type (see in Table 1). The

output variable CarInsurance is binary (0 and 1) as for

indicating whether the customer will eventually purchase the

insurance. There are two major parts of information included in

this dataset: One is customer’s demographic information

including - age, job, marital, education level, credit status,

yearly balance so on so forth, another part is derived directly

from the company’s interaction record with the customer

including communication method, last contact month, last
contact day, call start and end time, days have passed since the

previous contact and also the result when last time approach to

this customer.

Table 1 Variable Type

No. Column Type

1 Id categorical

2 Age numeric

3 Job categorical

4 Marital categorical

5 Education categorical

6 Default categorical

7 Balance numeric

8 HHInsurance categorical

9 CarLoan categorical

10 Communication categorical

11 LastContactDay categorical

12 LastContactMonth categorical

13 NoOfContacts numeric

14 DaysPassed numeric

15 PrevAttempts numeric

16 Outcome categorical

17 CallStart numeric

18 CallEnd numeric

19 CarInsurance categorical

 Results and Discussion

3.1 Naïve Bayesian

Naïve Bayesian model is built using “e1071” package. Firstly,

a baseline model is built, then, “caret” package is combined for

automatic model tuning, and lastly, a comparison model with

one highly correlated variable dropped is built.

a. baseline model

Instead of the target variable, all rest of the variables are used

to predict the target. The accuracy achieved is 0.7603 and AUC

is 0.732 (see in Figure 1 and Figure 2). Also, kappa statistic

value, which is denoted as kappa in confusion matrix output, is

also referred to as an adjusted accuracy, taking into account the
possibility of a correct prediction by chance along. The de facto

standard for interpreting Kappa value is as follows:

• Poor prediction: < 0.2

• Fair prediction: between 0.2 and 0.4

• Moderate prediction: between 0.4 and 0.6

• Good prediction: between 0.6 and 0.8

• Very good prediction: 0.8 to 1

As indicated from the confusion matrix, Kappa value for the

baseline model is 0.482, therefore, can conclude this is a
moderate performing model. Since this is the basic model

without any tuning, this result is expectable.

21

International Journal of Data Science and Advanced Analytics

Vol: 02 Issue: 02

Figure 1 confusion matrix output

Figure 2 AUC

b. hyperparameter tuning with caret

“caret” package offers some parameter tuning. To look up what
parameter can be managed by “caret”, modelLookup() function

can be used. For naïve_bayes model, three parameters are

offered for tuning, laplace, usekernel, and adjust. As seen in

Figure 3, will set the range for grid searching. Although as

understand from data exploration, laplace is not required since

there is no class showing zero probability, and kernel is required

since all the numeric variables are not following Gaussian

distribution, will still run grid search to validate the assumption.

Figure 3 parameter setting

Part of the result is showing in Figure 4. As can tell from the

final output, final optimized parameters are identified as laplace

= 0, usekernel = TRUE and adjust = 0, which is in accordance

with the assumption beforehand. Then, will apply the optimized
parameter achieved to the initial model without any parameter

tuning. An accuracy of 76.06% is obtained, no significant

improvement found comparing with baseline model.

Figure 4 grid search for naïve Bayes

c. dropping off one high-correlated variable

As identified in the correlation matrix, two strongly correlated

variables are: DaysPassed and PrevAttempts. To compare

which of these two variables has a higher impact on the

prediction model, will compute the correlation between each of

them and the target variable. As seen in Figure 5, actually both

of them has a weak impact on prediction, and DaysPassed

showed even lower influence, therefore, decide to drop

DaysPassed.

The result is shown in Figure 6, the accuracy of 0.7487 and
0.754 are achieved, which is slightly lower than the baseline

model.
Figure 5 correlation calculation

Figure 6 confusion matrix output

3.2 Decision Tree

In the first decision tree, “rpart” package is used. Like in Naïve

Bayes, firstly, a baseline without any tuning will be built, then

three extra experiments are attempted:

22

International Journal of Data Science and Advanced Analytics

Vol: 02 Issue: 02

Table 2 Packages and the usage for building Decision Tree

No. experiments Package Model

1 change parameter minsplit, minbucket

rpart
Decision

Tree
2 use caret to tune cp

3 change split method - entropy

Experiment 1: minsplit, minbucket are tuned to prune the tree.

Minsplit - the minimum number of observations that must exist

in a node

Minbucket - the minimum number of observations in any

terminal <leaf> node.

Therefore, a small number choice of minsplit, minbucket will

lead to complexed tree, whilst large number of minsplit,

minbucket will get the tree pruned.

Experiment 2: use “caret” to tune cp.

cp is the complexity parameter; this is used to prune the
complexity of the tree.

Experiment 3: change split method to “entropy”

Since the default split method is Gini, will change it to

“entropy” as experiment on prediction accuracy.

a. baseline model

The baseline model is generated, and prediction method is

chosen as “class”. Use print(tree) function can print out the

rules of the tree. As can tell from the result, the root has 3000

instances, with a proportion of 0.599 and 0.401 for class

distribution. The first variable chosen is CallLast, which split

the tree by 2037 versus 963. On the node CallLast < 0.00424,

the purity is 0.7540, whilst on the node of CallLast > 0.00424
the purity is 0.7289. Next, Outcome, LastContactMonth and

HHInsurance are selected in the following steps. As noticed,

totally four variables are used in building the tree: CallLast,

Outcome, LastContactMonth and HHInsurance. Figure 7 is the

visualization of the decision tree.

The accuracy for this baseline tree is achieved as 0.8173for

training data and 0.811 for testing data. As tell from the

confusion matrix output in Figure 8, the Kappa value also

increase to 0.6285 from Naïve Bayes. This indicates the

decision tree built is a fairly good prediction.

Figure 7 decision tree rules

Figure 8 confusion matrix for decision tree

b. change parameter minsplit, minbucket

Figure 9 is showing the code for tuning the parameter minsplit,

minbucket. In this situation minimum split is defined as 10 and
minimum bucket as 40, also complexity value is set as 0.

Prediction result is showing 0.8347 of accuracy on training data

and 0.818 accuracies on test data, which are both slightly better

than baseline.

Figure 9 change parameter minsplit, minbucket

c. use “caret” to tune cp

By using plotcp() function, can plot out the complexity of the

existing decision tree. As can tell from Figure 10, when the

complexity of the tree is roughly between 0.01 and 0.02, the

tree is showing a relatively good performance, with low error
rate and adequate tree size. Therefore, in grid search value is

selected between -1 and 2, with a step of 0.01. The search result

is shown with optimized cp identified as 0.

Figure 10 complexity plot

d. Split method change to entropy

Since the default split method is Gini, will try with Entropy split

method and see whether there will be an improvement on

performance. The accuracy is achieved as 0.6517 for training

data and 0.796 for testing data.

23

International Journal of Data Science and Advanced Analytics

Vol: 02 Issue: 02

3.3 Decision Tree with boosting

The second decision tree is built using “C50” package.

Comparing with “rpart”, “C50” offers the option to tune the

parameter trials, which enables a boosting procedure. This

method is very similar to other boosting tree methods such as

AdaBoost.

As seen in Figure 11, the trial is specified as 10, this means 10

decision trees will be used in the boosted team for getting an

optimized tree. According to the previous research result, the
estimated improvement in prediction error rate is about 25%.

According to the confusion matrix for training and testing data,

in this research, the boosting tree significantly increased

training dataset prediction accuracy, but the effect on the testing

set is not that significant. However, overall accuracy increased

to 0.8796 from 0.8551.

Figure 11 trial parameter tuning

3.4 Neural Networks

Neural networks algorithm can be used to do regression as well

as classification. The strong point about neural networks is that

it does not have any a priori assumption in the dataset. It is

flexible to apply and can generate very good prediction result if

tuned well. However, the drawback is the computational time it

takes to train the neural is significantly higher than the previous

models.

a. baseline model with one hidden layer and one neuro

Package “neuralnet” is used to train a basic neural network. As

seen in below Figure 12, parameter hidden is specified as 1,

indicating this is a neural network with one hidden l layer and

one single neuro.

Figure 12 baseline for neural network

The result in Figure 13 is showing, the training process is not

converging, and the max steps has exceeded. Therefore, to

solve this problem has to increase the complexity of the model,

this means either has to add-in extra hidden layer or hidden
neurons.

Figure 13 result for single neuro neural network

b. A neural network with 3 neurons

The second model is built with 3 neurons in one hidden layer.

This time, the training process managed to converge. With
roughly 2 mins training time. Then, by applying the plot()

function, the final network structure can be generated. As seen

in Figure 14, as expected, there is one hidden layer between the

input layer and the output layer. Each of the input variables is

taken as one input neuron and the final prediction is generated

with output neuro. Weights are calculated between each input

neuro and each of the neuro in the hidden layer.

Then, this trained model is applied to training and testing data

to compute the prediction. The output of the neural network is

a value between 0 and 1. An activation function is defined as

less than 0.5 then categorized as 0, and greater than 0.5, then

classed as 1.
Then confusion matrix for training and testing data is calculated

showing the accuracy of both training and testing data is very

low, 0.677 and 0.569 respectively.

c. grid search with caret

Same as in decision tree and naïve Bayes, “caret” package is

used to tune the parameters. The size is referring to the number

of neurons in the hidden layer, and the decay parameter is

referring to the weight. As seen in Figure 14, grid search is set

with size and decay specified as below.

Figure 14 grid search for the neural network

Then the grid search is applied to train the model. The result

and tuning code is shown in Figure 15. An optimized number

of 6 neuro is suggested with a decay of 0.2.

Figure 15 tuning code and result

d. building the neural network with optimized tuning parameter

Next, an optimized neural network is built with parameters

found in grid-search. The final accuracy for training and testing
data is achieved as 0.6366 and 0.646, which is slightly better

than the previous model but still performing very poor. Also, it

is noticed that the training time consumed as raised to 5.12

mins.

24

International Journal of Data Science and Advanced Analytics

Vol: 02 Issue: 02

Figure 16 neural network structure

3.5 Analysis of the Evaluation

a. There are three algorithms picked, and four models are built

in the previous experiment section. As shown in Table 3, the

best performing model without any further effort on tuning is
the decision tree model, which reaches an average accuracy of

0.8551. This result also matches with the findings in the

previous literature review study. Many of the researches shown

that decision tree can generate relatively good prediction in the

classification task. One experiment did on the same dataset

using the decision tree, also generated an accuracy of 0.82.
Naïve Bayesian is providing moderating prediction accuracy,

not as good as decision tree, but generally acceptable. Whilst

the ANN model has shown performance relatively low, which

might due to the lack of training and low complexity of the

model.

Table 3 Baseline model comparison for all models

b. The result after grid-search

 For each of the model, “caret” package is used to do automatic

tuning of the model. Except for the Naïve Bayesian model

which remained almost the same as the baseline, all rest models

are showing slight improvement. However, ANN is still giving

poor performance. This might due to the learning rate set in

grid-search, has not reached the optimized combination for

ANN to give a good performance.

Table 4 Optimized models with tuned parameters

c. additional experiments

There are some additional experiments did together with the

baseline model as a comparison. In Decision Tree1, an
experiment is done on changing the split index from Gini to

Entropy as well as altering the parameter value for minsplit,

minbucket. In both of the experiments, no significant

improvements noticed. This might be caused by the minsplit,

minbucket manually set by us is not the optimized ones. Further

experiments required on tuning this.

Decision Tree2, with boosting is the best performing one, which

is showing accuracy at 92.63% for training data and 83.3% for

testing data. Although the average performance still very good,
but the drop from above 90 to 83 also indicates the drawback of

the decision tree, that it could generate high accuracy model

base on training data but result in overfitting and cause higher

error rate in testing data.

The last one is on dropping one highly correlated variable from

the dataset. This might due to the reason there are only 19 input

 baseline

No. Model

Train -

Accuracy Test - Accuracy

Average -

Accuracy

1 Naïve Bayes 0.7603 0.772 0.76615

2 decision tree1 0.8173 0.811 0.81415

3 decision tree2 0.8913 0.819 0.85515

4 ANN 0.6773 0.569 0.62315

No. Model

Train -

Accuracy

Test -

Accuracy

Average

-

Accuracy

optimized

parameter

1 naiveBayes 0.7603 0.761 0.76065

laplace = 0,

usekernel =

TRUE and

adjust = 0

2

decision

tree1 0.8347 0.818 0.82635 cp = 0

3

decision

tree2 0.8893 0.848 0.86865

trials = 30,

model =

rules and

winnow

 = FALSE

4 ANN 0.6366 0.646 0.6413

size = 6 and

decay = 0.2

25

International Journal of Data Science and Advanced Analytics

Vol: 02 Issue: 02

variables when dropping one variable, more information is

losing than the prediction strength gained by the algorithm.

Table 5 addition experiments on the model

 Conclusions

As the result shown in experiments and comparison analysis

did, it is noticeable that for this dataset when applying

classification prediction, the decision tree can provide more

steady performance. As an attempt to optimize the decision tree

model, the trial parameter is used to build a boosting tree. This
largely increased the accuracy of prediction for training data to

92.63%, however, the testing dataset is not performing similarly

well, only generating accuracy of 83.3%. This unveils the

drawback of the decision tree that it is prone to overfitting. The

advantage of the decision tree is that it is also easy to interpret

and can be interpreted as rules. In the rule generated in this

decision tree as shown in Figure 23, variables are selected

according to their significance to the prediction model.

Therefore, four important variables achieved. These four

variables can be used, to build a more concise model instead of

all the original input variable from the dataset. In this sense, the

decision tree can be used for feature reduction.
ANN is showing low prediction rate, which might due to the

complexity of the model. The first model we built is with 3

neurons, when increased that to 6 neurons, the performance

slightly increased, but still not satisfying.

 Further experiments are required on grid searching more

optimized hyperparameter to fit the model well for ANN, and

also pruning the decision tree complexity to solve the problem

of overfitting.

References

[1] L. Tatiana, “Machine learning in Insurance,” Accent. Rep., no. 1, pp.

1–36, 2015, doi: 10.1002/9781119183600.

[2] Bernard Marr, “How Big Data Is Changing Insurance Forever,” 2015.

[Online]. Available:

https://www.forbes.com/sites/bernardmarr/2015/12/16/how-big-

data-is-changing-the-insurance-industry-forever/#3295cae3289b.

[Accessed: 09-Oct-2018].

[3] S. Tavish, “What Is The Difference Between Machine Learning

& Statistical Modeling,” 2015. [Online]. Available:

https://www.analyticsvidhya.com/blog/2015/07/difference-machine-

learning-statistical-modeling/. [Accessed: 14-Oct-2018].

[4] Asare-Frempong, J. and Jayabalan, M., 2017, September. Predicting

customer response to bank direct telemarketing campaign. In 2017

International Conference on Engineering Technology and

Technopreneurship (ICE2T) (pp. 1-4). IEEE.

[5] L. Rokach, Data Mining with Decision Trees: Theory and

Applications, 2nd ed. World Scientific Publishing Co. Pte. Ltd., 2015.

[6] M. Karim and R. M. Rahman, “Decision Tree and Naïve Bayes

Algorithm for Classification and Generation of Actionable

Knowledge for Direct Marketing,” J. Softw. Eng. Appl., vol. 06, no.

04, pp. 196–206, 2013, doi: 10.4236/jsea.2013.64025.

[7] Scikit-learn, “RBF SVM Parameters — scikit-learn 0.14

documentation,” scikit-learn developers, 2013. [Online]. Available:

http://scikit-

learn.org/stable/auto_examples/svm/plot_rbf_parameters.html.

[Accessed: 14-Oct-2018].

[8] S. and Moro, P. and Cortez, and P. Rita, “A data-driven approach to

predict the success of bank telemarketing,” Decis. Support Syst., vol.

62, no. February 2014, pp. 22–31, 2014, doi:

10.1016/j.dss.2014.03.001.

[9] S. Moro, P. Cortez, and P. Rita, “Using customer lifetime value and

neural networks to improve the prediction of bank deposit

subscription in telemarketing campaigns,” Neural Comput. Appl.,

vol. 26, no. 1, pp. 131–139, 2014, doi: 10.1007/s00521-014-1703-0.

[10] M. T. Hagan, H. B. Demuth, and M. H. Beale, “Neural Network

Design,” Bost. Massachusetts PWS, vol. 2, p. 734, 1995, doi:

10.1007/1-84628-303-5.

[11] J. H. Friedman, “Greedy Function Approximation- A Gradient

Boosting Machine,” Statistics (Ber)., vol. 29, no. 5, pp. 1189–1232,

2001, doi: doi:10.1214/aos/1013203451.

[12] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting

System,” 2016, doi: 10.1145/2939672.2939785.

[13] C. Tianqi, “Story and Lessons Behind the Evolution of XGBoost,”

2016. [Online]. Available:

https://homes.cs.washington.edu/~tqchen/2016/03/10/story-and-

lessons-behind-the-evolution-of-xgboost.html. [Accessed: 15-Oct-

2018].

[14] B. Manikandan, “Cleaning, Visualizing and Modeling Cold Call Data

| Kaggle,” Kaggle, 2017. [Online]. Available:

https://www.kaggle.com/manibhask/cleaning-visualizing-and-

modeling-cold-call-data. [Accessed: 08-Oct-2018].

[15] Emma Ren, “Cold Calls: Data Mining and Model Selection | Kaggle,”

Kaggle, 2017. [Online]. Available:

https://www.kaggle.com/emmaren/cold-calls-data-mining-and-

model-selection. [Accessed: 08-Oct-2018].

No. experiments Package Model
Train -

Accuracy Test - Accuracy Average - Accuracy

1 change parameter minsplit , minbucket rpart
Decision Tree1

- - -

2 change split method - entropy rpart 0.6517 0.796 0.72385

3 boost tree C50 Decision Tree2 0.9263 0.833 0.87965

4 drop high-correlated variable e1071 Naïve Bayes 0.7487 0.754 0.75135

