

1

International Journal of Data Science and Advanced Analytics

Vol: 02 Issue: 02

Abstract— Software Development Organizations develop a huge number of projects on a yearly basis. One of the main issues is that

which tool can be selected for an accurate estimation of the cost of software projects. Software cost estimation (SCE) is one of the main

objectives of any project. SCE directly introduces almost all management events including resources allocation, project planning, and

project bidding. In this study, some important SCE methods have been studied for comparative analysis and this has been concluded

that none of the methods are essential inferior or superior to others, as there is no individual approach that is finest for every situation.

The selection of the method is depending upon the nature of the project.

Keywords— Software Cost Estimation, Software Cost Estimation Methods, Algorithmic, and Non-algorithmic Approaches

 Introduction

Software projects have become a very affluent element of the
computer system in existing years. The huge development cost

of software projects is due to human efforts and the utmost SCE

methods emphasize on this [1]. Accuracy in the cost estimation

is very acute for both the developer and customers.

Undervaluing the software costs might result to outstrip the

budgets with under-developed functions, low quality and

failure to complete the project within time [2]. The size,

accuracy and rising complexities of the software projects have

excessive effects on the estimation’s accuracy. The very

important role is of the project management in the supervision

of these estimation procedures. A lot of research has been

conceded that redirects the increasing loads of high-grade
software through operative cost estimation [3]. Many software

cost estimation models try to produce an effort estimation,

which further can be transformed into the project duration and

cost, even though effort and cost are interrelated to each other

[4]. There are a number of methods and models which are used

for software cost estimation, but it is very difficult to decide

which model or method can be selected for cost estimation [4].

In direction to solve such problems, it is very essential to have

knowledge about SCE methods and models [5]. To estimate the

project cost it is important to recognize and understand the

strength and weaknesses of the SCE models to be used [6]. This
research gives a comprehensive analysis of each of the SCE

methods which could transpire its use in numerous

surroundings.

The rest of this paper is organized into 5 sections. Section first

starts from the introduction. Section 2 and 3 discuss the

software cost estimation techniques and selection mechanism.

Section 4 is a conclusion and references are defined in section

5.

 Software Cost Estimation Techniques

Some of the existing approaches for SCE are listed and
summarized in this section. SCE approaches are mainly divided

into two main categories. These are algorithmic and non-

algorithmic approaches. These approaches utilized the source

line of code (SLOC) as input. The first one is discussed in the

upcoming section

 Non-algorithmic Techniques

In non-algorithmic models, the estimation can be done by using

preceding experience and projects, which is the same as the

under-estimation projects. Some of the non-algorithmic

approaches are listed here.

2.1.1. Expert Judgment

Expert Judgment (EJ) technique is used widely throughout the

generation of cost estimation of software projects. Estimators

have to create a large number of suppositions and judgments for

predicting the cost of new products. Though the use of EJ is

often scowled upon, not well established or implicit by non-cost

estimators within a parallel engineering environment [7]. EJ is

actually a capability for the prediction of cost estimation of

software projects where the procedure used in accessing with

groups or personages with expert knowledge or preparations.

EJ depends on expert experience, knowledge and motivations,
the grand of knowledge on the area and the discussion between

analysts and experts. Thus, according to Cooke, the significant

tool using EJ is the illustration of hesitation. Ballay expresses

the expert that the “person who has the knowledge” and the

analyst who continue EJ exercise. However, there is no

recognized research on statistics collection methods, there is an

extensive sensation that the method must be mainly

spontaneous and thus responsible to be individually unfair and

delicate to political stresses [8].

Advantages: EJ uses past Experience for cost estimation of the

software projects. EJ method is the knowledge from previous

Software Cost Estimation: Algorithmic and Non-Algorithmic Approaches

 Bilal Khan1, Wahab Khan2, Muhammad Arshad3 and Nazir Jan4
1, 2 City University of Science and Information Technology, Peshawar, Pakistan
3 Institute of Business and Management Sciences, University of Agriculture, Peshawar, Pakistan
4 University of Engineering and Technology, Peshawar, Pakistan
1bilalsoft63@gmail.com, 2wahab_suit@yahoo.com, 3arshad12@aup.edu.pk, 4engr.nazirjan@gmail.com
Corresponding author email: bilalsoft63@gmail.com

2

International Journal of Data Science and Advanced Analytics

Vol: 02 Issue: 02

projects that the expert takes to the planned project. EJ methods

are appropriate for measuring the variances between previous

and imminent programs and are specifically beneficial for new

programs for which no past examples occur.

Disadvantages: EJ methods sometimes due to deficient
knowledge may produce complications. EJ methods are

habitually struggling to precisely estimate the cost of a new

software program. They are not repeatedly used unaided in

software cost estimation.

2.1.2. Analogy Based Estimation

Analogy-based (AB) cost estimation is a form of Cased Based

Reasoning (CBR). Cases are demarcated as notions of events

that are partial in space and time [9]. AB cost estimation of

software projects is mainly apparent, as it relies on past

information from comparable projects, whereby comparisons

are resolute by equating the projects’ significant features and

attributes. Though, one critical side of the AB method is not yet
completely accounted for; the dissimilar effect or premium of a

project’s several features [10]. AB cost estimation of software

projects is molded on the moralities of real e orts and values [4].

AB approaches for estimation might mark its use at the system-

level and at component-level [5]. In some features, AB is the

appropriate forms of EJ as the expert frequently do searching

for corresponding conditions and enlightening the sentiments.

Following are the steps for making use of estimation by AB:

1. The planned project remains categorized.

2. Creating the choice of the precise comparable finalized

project whose attributes are stocked in an historic database.
In this method, the function of resemblance like Euclidean

similarity (ES), Shepperd and Manhattan similarity (MS) are

defined which associates the features of two projects.

𝑆𝑖𝑚(𝑝, 𝑝′) =
1

∑ √𝐷𝑖𝑠𝑡 (𝑓𝑖,𝑓′𝑖)∗𝑊𝑖𝑛
𝑖=1

 (1)

here p and p’ are the projects, 𝑓𝑖 and 𝑓`𝑖 shows ith features for

each project is 0are001 and exploited for getting the non-zero

result, 𝑊𝑖 is the weight falls in range from 0 to 1 for n features.

MS and ES formulas are somewhat more similar method but it

benefits in computing the variance between them [4].

Advantages: In the early phases, AB estimation of projects is a

better way when there is very low information available. This

method takes less time and is simple and easy to use. Success

rates of an organization are probable to be high since the

method is grounded on the organization’s historical project

records. It can be used for the estimation of effort and period

of separable responsibilities too.

Disadvantages: Some complications are still antagonized by
AB estimation methods, for example, the non-normal features

e.g. heteroscedasticity, skewness and extreme outliers of the

datasets from software engineering [11] and the growing sizes

of the datasets [12]. The non-normal and bulky datasets

permanently lead AB estimation approaches for low

forecasting accuracy and high computational outlay to relieve

these downsides [13].

2.1.3. Bottom-Up and Top-down Approach

It is also known as Macro Model. EJ software development

effort may observe bottom-up or top-down approaches. The

complete effort estimation may be grounded on possessions of

the software project altogether and divided into the project

activities (top-down) or premeditated as the sum of the project

activity estimates (bottom-up) [14]. The complete SCE is on

assessment from the widespread stuff of the software project

using a top-down approach for estimation, and the project is

distributed in the different subsidiary sections or appliances [5].
Recompense contains events of system-level e.g.

documentation, configuration management, project control,

integration, etc.

Advantages: This method is generally faster and simple to

implement for cost estimation of software projects as it needs

the least details of the project. This method is attentive for the

system-level activities e.g. documentation, integration,

configuration.

Disadvantages: For justifying the estimate or conclusions it

does not deliver details. It does not recognize the exertion of

low-level problems and can have less correctness that incline to

the desertion of lower-level elements and the probability of
procedural problems.

 Algorithmic Techniques

Algorithmic models use mathematical equations for cost

estimation of software projects. These models estimate the cost

based on project type, size, attributes, procedures, and the team

involved in the development of software projects. Using

algorithmic techniques various models have been established

such as FBPA, Putnam’s model and COCOMO model [15].

Each of them uses the mathematical equation:

𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑓(𝑥1, 𝑥2, 𝑥3, … … … , 𝑥𝑛) (2)

Here, x1, x2, x3, …., xn are the cost factors.

 Some algorithmic models are discussed here.

2.2.1. COCOMO (Constructive Cost Model) Model

Boehm proposed this model which is broadly acknowledged in

practice. Using COCOMO effort is measure in person-months

and the size of code S is given in a thousand lines of codes

(KLOC).

a) Basic COCOMO

The basic COCOMO model uses different three sets of {a, b}

conditional on the difficulty of the software only, given in Table
1:

This is a simple model and easy to used. The basic COCOMO

can only be used as an uneven estimation as several cost factors

are not considered.

Table 1 Basic COCOMO Set of (a, b) [16]

Projects A a

Simple 2.4 1.05

Complex 3.0 1.15

Embedded 3.6 1.20

b) Intermediate COCOMO and Detailed COCOMO

Effort estimation is gained using power function with given

three sets of {a, b} in the intermediate COCOMO, in which

3

International Journal of Data Science and Advanced Analytics

Vol: 02 Issue: 02

coefficient is different from that of the basic COCOMO shown

in Table 2.

Table 2 Intermediate COCOMO Set of (a, b) [4]

Projects A B

Simple 3.2 1.05

Complex 3.0 1.15

Embedded 2.8 1.20

Then, 15 attributes as cost factors are selected having the values

ranging from 0.7 to 1.66 shown in Table 3. The complete impact

factor M is achieved as the product of all single factors, the
estimate is gained by multiplying M to all nominal estimates.

Table 3: The cost factors and their weights in COCOMO II [1].

Table 3 The Cost Factors and their Weights [16]

Using the basic COCOMO or intermediate COCOMO the

software cost estimation in system level, while the detailed

COCOMO works on every sub-system individually. The

detailed COCOMO is very much suitable for the large systems

which contain irrelevant sub-systems.

Advantages: It is easy to understand and implement and have

better accuracy. This model uses historical data to work fine,

therefore it is very predictable.
Disadvantages: The COCOMO model ignores the

documentation, requirements cooperation, knowledge,

customer skills, hardware issues, person turnover level, and

other parameters. It generalizes the influence of security/safety

traits. It depends on the total time consumed in each level.

2.2.2. Agile COCOMO Model

The Agile COCOMO includes the complete algorithmic model

for COCOMO. It the most momentous way of cost estimation

of software projects based on analogy. It is used to acquire the

precise results for the newest projects [4]. Agile COCOMO-II

model has been developed by USC-CSE. USC-CSE is a tool for
SCE which depend on the COCOMO-II model. Analogy based

estimation is used here for the production of accurate output,

which is simple and easy to use and learn. We might create

estimation for a project in terms of function points, object

points, person-months, and the dollar, etc. [6].

2.2.3. Putnam’s Model

This model derives based on Rayleigh/Norden's manpower

dissemination and analyzing and finding several finalized

projects [17]. The essential part of Putnam's model is known as

the software equation defines as follows:

𝑆 = 𝐸 ∗ 𝐸𝑓𝑓𝑜𝑟𝑡𝑠1/3 ∗ 𝑡𝑑
4/3

 (3)

Here td is the delivery time of software, E is the environmental

factor which replicates the competences of development that

can be taken using software equations from historical data. An

effort is taken in person year and the size of S is in LOC.

Additional essential relation originate by Putnam is

𝐸𝑓𝑓𝑜𝑟𝑡 = 𝐷0 ∗ 𝑡𝑑
3 (4)

Here D0 is manpower build-up parameter ranging from 8 (new
software) to 27 (remodeled software). The Putnam’s model is

usually used in preparation and SLIM. SLIM is a tool based on

Putnam’s model for manpower planning and estimation.

2.2.4. Function Point-Based Analysis

Function Point-Based Analysis (FPBA) is the method of

calculating the complexity and size of a software system in the

4

International Journal of Data Science and Advanced Analytics

tenure of the functions that the system provides to the user [18].

The provided functions are isolated to the tools or language

used for the development of the software project [19]. FPBA is

basically planned for the measurement of business type

applications, which is not suitable for scientific or technical
applications because scientific or technical applications deal

with complex algorithms that cannot be handled through FPBA

[20]. The FPBA features to overcome the major problems of

using Lines of Code (LOC) as a measure of system size. First,

function points are autonomous of the tools, language or

procedures used for operation; i.e., they do not revenue into

concern of processing hardware, database management

systems, programming languages, or any other data processing

technology [21]. Second, function points can be estimated from

design specifications or requirements specifications thus

creating it promising to estimate development effort in the

initial stages of development. Meanwhile, function points are
openly related to the statement of requirements; any variation

of requirements can effortlessly be charted by a re-estimation.

Third, as function points are grounded on the system user’s

outdoor opinion of the system, non-technical users of the

software system have good consideration of what function

points are quantifying [22].

Advantages: FPBA can be used in the initial stage of the

software development life cycle. It is autonomous of

methodologies, technology, and programming language. FPBA

can be used for graphical user interface and can be calculated

initially and frequently.
Disadvantages: FPBA depends on individual assessments with

the involvement of too many judgments that’s why it has low

accuracy and very time-consuming. It needs transformation as

many cost models and efforts are based on LOC and very less

amount of research data is accessible on FPBA equated with

LOC.

 Selection of Estimation Techniques

From the above discussion on the different techniques for cost

estimation, this is concluded that there is not any single model

that can be recognized as the finest one. The pros and cons of

each model are correlated, so a consolidation of these models
[23] can help in running out the flaws of any individual method.

This can help to increase their individual strength and reduce

the adverse effects of the separable model. We also can cross-

check one method with another. Typically, it is suggested to use

non-algorithmic approaches e.g. expert judgment or estimation

by analogy method for the known projects. Instead of less

known and larger projects, it verifies that to use algorithmic

methods. Among the algorithmic models, COCOMO is much

better than the other models. Efforts can be prepared to use an

arrangement of the techniques to reach a better estimate of the

software.

 Conclusions

To achieve desired results in term of cost estimation, the

software cost estimation can be perceived as a necessary

activity that requires the use of both precise methods and

techniques. From the assessment of different models, we can

accomplish that there is not a particular method of model that is

good or bad from one another, actually, their strengths and

weaknesses are often complementary to one another. Now the

problem as that which method for estimation to be used for

particular project estimation? It depends upon the nature of the

project. As per the strengths and weaknesses of the individual
methods, we can make a choice concerning which method can

be selected for the cost estimation of software projects. The

project managers are essential to insert values for different

drivers as per cost with concerns to data from historical

projects. The COCOMO models can deliver all abilities. It

produces the cost for new projects in an abundant precise way

than several models of cost estimation. Our remarks directed

that it can be preeminent to use several cost estimation

techniques, and then compare the outcomes, before defining the

causes for large variants and documenting any expectations that

were made while making the estimates of software projects..

References

[1] H. LEUNG and Z. FAN, “Software Cost Estimation,”

Inf. Softw. Technol., vol. 34, no. 10, pp. 307–324, 2002.

[2] I. M. Keshta, “Software Cost Estimation Approaches :

A Survey,” pp. 824–842, 2017.

[3] B. Boehm, C. Abts, and S. Chulani, “Software

development cost estimation approaches – A survey,”

vol. 10, pp. 177–205, 2000.

[4] V. Khatibi and D. N. . Jawawi, “Software Cost

Estimation Methods : A Review,” J. Emerg. Trends

Comput. Inf. Sci., vol. 2, no. 1, pp. 21–29, 2010.
[5] A. J. Albrecht, “Measuring application development

productivity,” IBO Conference on Application

Development. pp. 83–92, 1979.

[6] B. Boehm, “Software Engineering Economics,” IEEE

Trans. Softw. Eng., vol. 10, no. 1, pp. 4–21, 1984.

[7] C. Rush and R. Roy, “Expert Judgement in Cost

Estimating: Modelling the Reasoning Process,”

Concurr. Eng., vol. 9, no. 4, pp. 271–284, 2001.

[8] R. T. Hughes, “Expert judgement as an estimating

method,” Inf. Softw. Technol., vol. 38, no. 2, pp. 67–75,

1996.

[9] M. Shepperd and C. Schofield, “Estimating software
project effort using analogies,” IEEE Trans. Softw.

Eng., vol. 23, no. 11, pp. 736–743, 1997.

[10] M. Auer, A. Trendowicz, B. Graser, E. Haunschmid,

and S. Biffl, “Optimal project feature weights in

analogy-based cost estimation: Improvement and

limitations,” IEEE Trans. Softw. Eng., vol. 32, no. 2,

pp. 83–92, 2006.

[11] C. Hofmeister, R. L. Nord, and D. Soni, “Global

analysis: moving from software requirements

specification to structural views of the software

architecture,” Software, IEE Proceedings-, vol. 152,
no. 4, pp. 187–197, 2005.

[12] M. J. Shepperd and G. Kadoda, “Comparing software

prediction techniques using simulation,” IEEE Trans.

Softw. Eng., vol. 27, no. 11, pp. 1014–1022, 2001.

[13] Y. S. Huang, C. C. Chiang, J. W. Shieh, and E.

Grimson, “Prototype optimization for nearest-neighbor

classification,” Pattern Recognit., vol. 35, no. 6, pp.

5

International Journal of Data Science and Advanced Analytics

1237–1245, 2002.

[14] M. Jørgensen, “Top-down and bottom-up expert

estimation of software development effort,” Inf. Softw.

Technol., vol. 46, no. 1, pp. 3–16, 2004.

[15] L. R. Nerkar, “Software Cost Estimation using
Algorithmic Model and Non-Algorithmic Model a

Review,” pp. 4–7, 2014.

[16] C. C. Model, “Basic COCOMO,” no. D, pp. 1–5, 2000.

[17] Q. Hu, “Production Functions,” vol. 23, no. 6, pp. 379–

387, 1997.

[18] G. C. Low and D. R. Jeffery, “Function Points in the

Estimation and Evaluation of the Software Process,”

IEEE Trans. Softw. Eng., vol. 16, no. 1, pp. 64–71,

1990.

[19] E. Bouwers, A. Van Deursen, and J. Visser,

“Evaluating Usefulness of Software Metrics-an

Industrial Experience Report,” Proc. 35th Int. Conf.
Softw. Eng., pp. 921–930, 2013.

[20] C. R. Symons, “Function Point Analysis: Difficulties

and Improvements,” IEEE Trans. Softw. Eng., vol. 14,

no. 1, pp. 2–11, 1988.

[21] G. C. Low and D. R. Jeffery, “Function points in the

estimation and evaluation of the software process,”

Softw. Eng. IEEE Trans., vol. 16, no. 1, pp. 64–71,

1990.

[22] C. F. Kemerer, “An empirical validation of software

cost estimation models,” Commun. ACM, vol. 30, no. 5,

pp. 416–429, 1987.
[23] M. V. Deshpande and S. G. Bhirud, “Analysis of

Combining Software Estimation Techniques,” Int. J.

Comput. Appl., vol. 5, no. 3, pp. 1–2, 2010.

