
 

18 

 

International Journal of Data Science and Advanced Analytics 

Vol: 1 Issue: 1  

 

 

 

 

 

 

 

 

 

Abstract— In this paper, we present real-time object identification algorithm, that can be implemented in the motion 

planning in Autonomous Surface Vehicles (ASV) at sea based on Faster Regional Convolutional Neural Networks 

(RCNN) model. These vehicles' control algorithms and path planning systems depend heavily on the surrounding area 

and the objects in sight, thus perception capability in near field is crucial for ASV's safety. Such systems can also be used 

for security applications, maritime traffic control and port management. The dataset we used consists of thirty six videos, 

captured in HD resolution, moreover, we shot another 3 videos for visual testing. We trained a Faster RCNN model in 

addition to a YOLOv3 model and compared the results. The first framework gave the best results while being the slowest, 

while the second one was fast and slightly less accurate. We showed that such a system can be implemented on a real-time 

camera feed and can be used as a part of the developments of an ASV as integral part of path planner for ASV . 
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1 Introduction  

With the recent advances in Deep Learning in general and 

object detection in particular, in addition to the recent growth 

in learning algorithms, sparked the research focused on 

combining the two systems – computer vision and path 

planning. 

 

These systems have been studied for decades. Most of the 

algorithms we use today were developed in the past but had 

not succeeded then because of the lack of data and computing 

power. Nowadays, we see improvements every year, as 

computers gain more power and more complex methods are 

developed. One type of algorithm that really thrived in recent 

years is Neural Networks. In the last few years, Neural 

Networks were responsible for all the advancements in the 

field of computer vision. When scientist and researchers sat 

down to tackle the problems of object detection using Neural 

Networks, they created RCNN [1] - Regional Convolutional 

Neural Networks. After 3 years, Faster RCNN [2] was created, 

which not only detected objects faster, but also had very high 

accuracy. Concurrently, two more frameworks were being 

developed – YOLO [3] and SSD [4], each having several 

versions. Although these frameworks are faster than RCNN 

and its ancestors, the accuracy is lower. These 3 networks are 

the main competitors today, YOLO being the only one that 

can sustain a real-time workload. 

 

A vision-based robot navigation system is one that allows an 

autonomous robot to move throughout its environment under 

constrains, such as avoiding obstacles. The availability of low 

cost, low power cameras and high speed SOCs (system on a 

chip) are the main reasons for the rapid development and 

growth of image sensor applications in motion and path 

planning. A mobile robot navigation system based on vision 

can be divided into indoor and outdoor type of navigation. The 

former can be a map-based or a mapless form of navigation, 

while the latter depends whether it is a structured or an 

unstructured environment. Both use object detection and 

tracking. 

 

In this project we performed detection on onboard/onshore 

video streams for the use of an autonomous ship motion 

planner around ports and docks. One of main the requirements 

here is the ability to operate at a real-time rate, running on a 

live video feed without much delay. We trained two largely 

known frameworks to be used for object detection in the 

future development of the ASV. 

 

2 Materials and Methods 

 

Before the rapid growth in learning algorithms in recent years, 

computer vision problems were solved by using classic 

mathematical models and algorithms. Object detection, in 

particular, was an important area of research because of the 

tremendous amount of real-world applications that require 

using it.  

 

2.1 Classic approach 

The classic approach for extracting ships from camera images 

is to segment the image using a segmentation algorithm and 

then to do a form of texture and shape analysis [5]. Another 

approach that was popular is focused on calculating image 

correlation between two images, in video-streams [6]. More 

ways and approaches were developed through the years. 

 

Krüger and Orlov [7] developed a whole system to 

automatically detect and track distant vessels in the images 

generated by the thermal or visual imager. It consists of a 

camera, pan-tilt unit, inertial measurement unit and image 

Object Identification in Maritime Environments for ASV Path Planner 

 Oren Gal1, Sean Levy1 
1Technion. Israel Institute of Technology, Haifa 

email: orengal@technion.ac.il 
 

Received: 25-Aug-19; Accepted: 08-Sep-19; Published: 08-Sep-19 

Corresponding author email: orengal@technion.ac.il 

 

 

 



 

19 

 

International Journal of Data Science and Advanced Analytics 

Vol: 1 Issue: 1  

exploitation computer. The first layer in the model calculates 

an estimation of camera orientation, using a Kalman filter on 

the raw data to estimate time-varying pitch and roll angles. 

The second layer uses the results prior to localize the horizon 

line in the images. The third layer is the boat detection layer. It 

uses the information about the horizon line to set up search 

areas for the algorithms and stabilize the image. The 

framework utilizes track-before detect algorithm using blobs, 

detection exploiting stable image regions and detection based 

on tracking salient image points. The fourth layer generates 

the detections.  

Object detection in 4K video was the subject of [8]. The 

advantage of this higher resolution is providing more 

information in the harsh sea conditions. An alternative way of 

exploiting rigidity analysis (segmentation of a multi-body 

fundamental matrix) was proposed by using keypoint tracking. 

The first stages use a SIFT descriptor to find keypoint objects, 

and then perform some image processing in order to identity 

full object zones. Later, PCA is applied to extract the main 

directions of textural variation. The detection is achieved by 

merging image blocks ranked as object by the texture 

discrimination algorithm and containing one stable SIFT 

keypoint. Furthermore, the algorithm is implemented over 

multiple resolutions of the same image.  

 

2.2 Deep Learning approach 

Many researchers in this field started using deep learning and 

neural networks, some implementing existing ones and some 

creating new architectures based on known ones. When 

performing object detection with deep learning there are 

several facts to be aware of:  

1. The need for a large dataset 

2. Preferably a large variety of objects should be used to 

increase the strength of the algorithm. 

In [10] transfer learning is applied to improve the results over 

a small dataset. Training a CNN using random parameter 

initialization with a small dataset will results in low 

performance. In such situations, transfer learning is 

implemented – the last fully connected layer of the network is 

replaced and retrained with the new data. A CNN based on 

Inception and ResNet models was trained on the ImageNet 

database. Then the pre-trained network was fine-tuned with 

the MARVEL dataset. After training several times and 

choosing the right hyper-parameters, the top accuracy was 

around 78%. In [11] a Faster RCNN network detects the 

objects. The authors built a sequence for the bounding boxes 

using the boxes returned from the network, the sequence is 

gathered over time and combined by a Bayesian fusion. It is 

assumed that the target ships do not move rapidly, therefore in 

each time step the bounding box with the largest IoU is 

selected. Moreover, an offset to the sequence was added, 

which was calculated between consecutive frames. The dataset 

used in this paper was collected manually from Google images 

- 7000 images of 7 classes - and annotated. The single image 

detection result was 94.65% (mAP) and when tested on seven 

video clips from YouTube the accuracy was 93.92%.M. H. 

Zwemer et al. [12] used an SSD framework to improve a 

visual tracking system. An SSD512 model detects the objects 

at 5 frames per second. This model takes as an input 512x512 

images, thus it’s unique name. After object detection is 

performed on the input image, the obtained vessel coordinates 

are converted to GPS coordinates using the camera 

calibration.. To create trajectories over time, visual tracking is 

performed by feature points. A total of 48966 image were 

collected from video footage. The authors used transfer 

learning with a VGG16 network to train the single shot 

decoder and reached 88% (mAP) accuracy. 

Vision-based robot navigation requires mapping of the sensory 

signals to motion control commands, which involves complex 

feature processing in environmental perception. The classic 

methods for this task do not take advantage of learning 

algorithms and use computer vision algorithms. In [13] stereo 

disparity was used to find the 1d displacement of 

corresponding pixels in the two images. Then, using disparity-

based segmentation, seed points are found which are then used 

to determine the location of obstacles. A path planner was 

implemented based on the path cost.  

 

2.3 DRL and path planning 

Recent Deep Reinforcement Learning models provide an end-

to-end framework for transforming pixel information into 

actions. In [14], the method developed tackles the problem of 

navigating a space to find a given target goal using only visual 

input. To train and evaluate the model, a new simulation 

framework with high-quality 3D scenes was developed, called 

The House Of inteRactions (AI2-THOR), which is designed 

by integrating the Unity 3D physics engine with Tensorflow. 

The model is a deep reinforcement learning model that takes 

as input an RGB image of the current observation and another 

RGB image of the target. The output of the model is an action 

in 3D such as move forward or turn right. It’s worth noting 

that model is based on a Deep Siamese Network which is a 

type of two-stream neural network. Information from both 

embeddings is fused to form a joint single representation. This 

joint representation is passed through scene-specific layers 

(room layouts and object arrangements), andthen the model 

generates policy and value outputs. In training phase,the 

framework ran several copies of training threads in parallel, 

but instead of running copies of a single game, every agent got 

a different navigation target. In [15], a motorized wheelchair 

was equipped with a front facing camera and a few LIDARs 

providing a 270 degrees coverage of objects present in the 

area surrounding the system. The visual path prediction 

system uses a YOLOv2 net [16], which recognizes 80 

different classes and provides a bounding box around the 

object in the image. Each bounding box is accompanied with a 

label, top, bottom, right, left coordinates and the prediction 

confidence. Then the system adjusts the Lidar and vision data 

frames to overlay the field of views of one another, converts 

the image resolution to that of the scan resolution and matches 

the two frames. 
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These works inspired us to develop a system that will be 

implemented on an unmanned ship, and will be used as an 

integral part of the path planning algorithm. 

 

3 Preliminaries 

 

3.1 Basic object detection metrics 

When evaluating object detection, we come across two 

different result measurements: 

1. Classification- whether an object exists in the image 

2. Localization- finding the location of the object 

In large datasets there are many classes and thus we cannot 

use simple accuracy-based metrics. That is why object 

detection algorithms introduce new metrics. 

 

3.1.1 Intersection Over Union 

In order to decide whether the predicted bounding box is 

accurate and measure the prediction accuracy we use 

Intersection over Union (IoU). Using this algorithm, we 

calculate the area of the IoU of the ground truth box and the 

framework's prediction. We choose a threshold and then we 

can decide which bounding boxes will be selected and which 

will be discarded. The IoU’s formula is given by: 

 

 
 

3.1.2 Non-maximum suppression 

There is another approach that can improve our results called 

NMS. This is extremely useful when we want to eliminate 

multiple boxes around one object. Given the probabilities 

associated with each detection one having the best results is 

selected. 

 

3.1.3 Average Precision and mAP 

There are two main components to the Average Precision: 

1. Precision- the ratio of the true object bounding box 

detections to the total number of bounding boxes 

predicted (on a single image).  

2. Recall- the ratio of the true bounding box detections 

to the total number of bounding boxes present in the 

dataset. 

In order to calculate the Average Precision, we create a 

precision-recall curve for each of the classes. For each class 

we look at all the outputs when using the dataset and all the 

ground-truths. Then, we loop over 11 recall values, find the 

maximum precision there and then compute the average.  

 
 

The AP across all the classes in the dataset is an average on all 

the AP values, and it is called Mean Average Precision, or 

mAP. mAP is the main parameter for evaluating object 

detection algorithms. Different datasets (VOC/COCO) add 

their own rules for the evaluation, i.e. what is considered a 

true prediction based on IoU, therefore there are several 

formats. It is important to note that one format can give a 

higher score or a lower one depending on the task itself. The 

calculation using the 11 precision-recall values is used in the 

PASCAL VOC 2007 format. 

 

3.2 YOLO – You Only Look Once 

The YOLO architecture [3] is widely used today in real-time 

applications. It takes an entire image at once and predicts the 

bounding boxes coordinates and class probabilities for these 

boxes. Thusthe high speed of operation. At the beginning, the 

framework takes an input image and divides it to a grid 

(normally 11 by 11 grid). Then, the net classifies each grid 

image and localizes it, from which YOLO predicts the 

bounding boxes and their class scores. 

 

3.2.1 Anchor boxes 

When a new object is assigned to a new grid (in this 

framework in each grid only one object is identifiable), the 

mid-point of the object is taken and assigned to the 

corresponding grid based on its location. In the case there are 

two midpoints of two objects lie in the same grid, only one of 

them will be selected. To solve this problem, Anchor Boxes 

are used. Two different shapes are predefined, and for each 

grid there will be two results. In practice, we use more than 

two shapes. The object is assigned to the bounding boxes 

based on the similarity between them and the anchor boxes' 

shape. 

 

The YOLO training composes of 2 phases. First, a classifier 

network like VGG16 is trained. Then the fully connected 

layers are replaced with a convolution layer and retrain it end-

to-end for the object detection. During training, the framework 

takes an image and maps it with a target- depends on the grid 

size, number of anchor boxes and number of classes. While 

testing, the input image will be divided by same grid size. 

Finally, Non-Maximum Suppression will be applied to obtain 

only one bounding box per object. 

 

3.2.2 Loss function 

During training the loss function is optimized to improve the 

predictions of the network. The loss function formula is: 
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The parameter 𝜆 is used to differently weight parts of the loss 

function. The first line computes the loss of the predicted 

bounding box position. It is a sum over each bounding box 𝑗 

of each grid cell 𝑖. 1𝑜𝑏𝑗 is 1 if an object is present in grid cell 

𝑖 and bounding box 𝑗 is around it. It is zero otherwise. The 

second line is the loss related to the predicted box width and 

height. We use square root to account for small deviations in 

large boxes. The third line is responsible for calculation of the 

loss associated with the confidence sore for each box. 1𝑛𝑜𝑜𝑏𝑗 

is the opposite of 1𝑜𝑏𝑗. The fourth part is the classification 

loss. It is written like a regular sum-squared error and the 1𝑜𝑏𝑗 

parameter is used to not penalize classification error when 

there is no object in the grid cell. 

 

3.3 YOLOv2 

YOLOv2 is the second version of YOLO, improving the 

accuracy and speed of the notorious framework.  The new 

architecture uses a model named Darknet-19 which is similar 

to VGG models by using 3x3 convolutional filters and doubles 

the number of channels after every pooling layer. Several new 

adaptations are made to increase the accuracy: 

 

3.3.1 Batch normalization 

A technique widely used while working with CNN's. It works 

by using small batches of the data in training. Removes the 

need for dropout layers (where neurons are deleted). 

 

3.3.2 High resolution classifier 

YOLOv2 trains using 224×224 images, and also uses 448×448 

images for fine-tuning the classification network for 10 

epochs. 

 

3.3.3 Convolution and anchor boxes 

YOLO makes arbitrary guesses on the size and shape of the 

boundary boxes. These guesses may work for some cases but 

not for others. Hence, if the model starts with diverse guesses 

that are common for real-life objects the training will be more 

stable. N anchor boxes are created, with certain shapes, and 

the model predicts offsets of each of them. The the input size 

was changed from 448x448 to 416x416 to create an odd 

number of spatial dimensions, because the center of the image 

often contains an object and it will be easier detecting. The 

authors removed one pooing layer to make the spatial output 

of the network 13x13, downsampling by 32 

 

3.3.4 Dimension clusters 

By using anchor boxes, two issues were found: the first one 

was that the bounding box dimensions were hand-picked, and 

while the network could learn to adjust those boxes it really 

depended on the anchors picked, better picked ones resulted in 

better performance. The suggested way is to use k-means 

clustering on the training set bounding boxes to find the 

centroids of the top-K clusters.  

Using standard Euclidean distance-based k-means clustering is 

not good enough, thus the distance metric used is: 

 

 
 

When the number of anchors increases, the accuracy plateaus. 

The authors chose 5 anchors –it was found as a good 

compromise.  

 

3.3.5 Direct location prediction 

The second problem with anchor boxes was model instability 

during early iterations. The main reason was the formulation 

used in the original YOLO–it was unconstrained and any box 

could end up at any point in the image, despite the location 

that predicted the box. To fix this the authorsgave predictions 

on the offsets to the anchors. YOLO predicts 5 bounding 

boxes at each grid cell in the output, or more specifically 5 

sets of 5 parameters 𝑡𝑥, 𝑡𝑦 , 𝑡𝑤, 𝑡ℎ, 𝑡𝑜 and applies 𝜎 (sigma 

function, value between 0-1): 

 
Figure 1: YOLOv2 anchors [16] 

 

(𝑏𝑥, 𝑏𝑦) is the location of the bbox; (𝑝𝑤 , 𝑝ℎ) is the anchor  

 

3.3.6 Fine-grained features 

YOLOv2 uses a passthrough layer which concatenates the 

higher resolution features with the low-resolution features by 

stacking them in order to detect smaller objects 

 

3.3.7 Multi-scale training 

YOLOv2 downsamples the input by 32 in the last layer, and 

after removing the fully connected layers it can take images of 

different sizes. Instead of fixing the input image size each 

time, every 10 batches the model selects a size randomly, in 

the condition that it is a multiple of 32 (i.e. 320x320, 352x352, 
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the final one being 608x608). This forces the network to learn 

to predict accurately across a variety of input dimensions.   

 

YOLO9000 [16] uses the YOLOv2 architecture to detect 9000 

object classes using hierarchical classification. It combines 

samples from COCO and the top 9000 classes from the 

ImageNet by taking four ImageNet images for every COCO 

image. It learns to find objects using the detection data in 

COCO and to classify these objects with ImageNet samples. 

 

3.4 YOLOv3 

YOLOv3 [17] comes as an improvement to YOLOv2 when 

the latter failed in comparison to other methods of object 

detection, like RetinaNet and SSD. The creators give up the 

speed in order to improve the accuracy.  YOLOv2 architecture 

lacks some important features that are considered as a state of 

the art in the way for good results, which are residual 

connections and upsampling.  The main base network is 

darknet53. It is trained on ImageNet with 53 layers, and then 

53 more layers are added for the process of detection alone. 

Darknet53 has less BFLOPS (billion floating point operations) 

than ResNet-152, but achieves the same classification 

accuracy faster. 

The new architecture makes detections at three different scales 

– down sampling the input image dimensions by 32,16,8. 

Objects are detected in 3 different sizes features maps at three 

different locations in the network. The different layers help 

address the issue of detecting small objects. The low-

resolution layers are responsible for detecting the large 

objects, whereas the large resolution ones should detect 

smaller objects. To set the anchors YOLOv3 applies k-means 

clustering, from which it selects 9 clusters- three for each 

scale. To obtain the multi-scale detection it assigns the three 

biggest anchors for the first scale, the next three for the second 

one and the last three for the third. That is why YOLOv3 

predicts 10 times more the number of boxes that YOLOv2 

predicts. 

 

3.4.1 Predictions 

The framework makes 3 predictions per location. Each 

prediction consists of boundary box, an objectness and class 

scores. The pipeline makes predictions at three different 

scales: 

1. In the last feature map layer 

2. It goes back and upsamples features by 2. Later, it 

takes a higher resolution feature map and combines 

them together. Then convolutional filters are applied 

on the new data to make the second set of 

predictions. 

3. It repeats stage 2 so the resulted feature map layer 

has better high-level information. 

 

3.4.2 Classes 

Originally, a YOLO framework applied a softmax function 

layer to convert scores into probabilities. In contrary, 

YOLOv3 uses an independent logistic classifier (called also 

logistics regression) to calculate the score for the class-label 

pair. Instead of using mean square error in evaluating the loss, 

it uses binary cross-entropy loss. A threshold is used to predict 

multiple labels for an object. 

 

3.4.3 Bounding-box prediction 

The authors of YOLOv3 changed the way of calculating the 

cost function. Each ground truth object is associated with one 

boundary box prior only, if a bounding box is not assigned, 

only confidence loss is calculated, skipping classification loss 

and localization loss. 

 

 

 

Figure 2: Darknet53 base model [17] 

 

 

3.5 RCNN- Regional CNN 

RCNN [1] is the first step towards Faster RCNN. The 

proposed method uses a naive algorithm called Selective 

Search to extract 2000 regions from the input image by 

combining similar pixes based on values and textures. Later, 

these 2,000 areas pass to a pre-trained CNN model. The 

outputs (feature maps) are then passed to a SVM for 

classification. The regression between predicted bounding 

boxes and ground-truth boxes are computed. The problem 

with RCNN is that the not only the training (and testing) is 

very slow because it has to classify 2000 region proposals per 

image, but also the selective search algorithm is a primitive 

one, and can be improved. 
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3.6 Fast RCNN 

A year later,one of the creators who created RCNN, wrote a 

better version of the algorithm called Fast RCNN [18]. Instead 

of feeding the region proposals to the CNN, it feeds the input 

image to the CNN to generate feature maps. Then, using 

selective search on those feature maps the identified regions of 

proposals are wrapped into squares by using a ROI Pooling 

layer. These outputs are passed to a fully connected layer as 

inputs, and finally two output vectors are used to predict the 

object dimensions with a softmax classifier and adapt the 

bounding box locations with a linear regressor. This 

framework is faster than it's predecessor, but when inspecting 

the results selective search slows down the algorithm, is less 

accurate and is a major bottleneck. 

 

3.7 Faster RCNN 

Faster RCNN fixes the problem of selective search by 

replacing it with a Region Proposal Network (RPN) [3]. Itis 

the third official iteration of RCNN. Like Fast RCNN, the 

image is provided as an input to a CNN which outputs a 

feature map. 

 

3.7.1 Anchors 

Using the features that the CNN computed, the RPN is used to 

find a predefined number of regions (bounding boxes), which 

may contain objects. Those bounding boxes have predefined 

shapes and sizes and are called Anchors (just like in YOLO). 

In the default configuration of Faster R-CNN, there are 9 

anchors at a single position in an image – 3 different sizes 

(e.g. 128,256,512) at three different ratios (e.g.1:2,1:1,2:1). 

Each point in the computed feature map is considered as an 

anchor, and a set of anchors for it is created. Even though 

anchors are defined based on the convolutional feature map, 

the final anchors reference the original image. 

 

 
Figure 3: Faster RCNN model, consist of 2 networks running 

in parallel to each other and then fed to a Fast RCNN [19] 

 

3.7.2 Region Proposal Network – RPN 

RPN proposes objects by having two different outputs for each 

of the anchors. The first output is the probability that an 

anchor is an object, not depending on class - this score is used 

to filter out the bad predictions. The second output is the 

bounding box regression, in order of adjust the anchors. The 

RPN is connected to a convolutional layer with 3x3 filters, 1 

padding, 512 output channels. The output is connected to two 

1x1 convolutional layers for classification and box-regression. 

At the same time, non-maximum suppression is applied to 

make sure there is no overlapping between the proposed 

regions. 

 

3.7.3 ROI Pooling 

After the previous step, the model has several object proposals 

with no class assigned to them. Instead of taking each 

proposal, cropping it, and running it through the network, 

Faster RCNN reuses existing feature maps. This is done by 

extracting fixed-size feature maps for each proposal using 

region of interest (ROI) pooling.  

 

The final step in the Faster RCNN's pipeline is to use the 

features extracted from the ROI pooling layer for 

classification. The last two goals: 

1. Classify object proposals into classes 

2. Adjust the bounding box dimensions 

The algorithm flattens the feature map for each proposal and 

uses 2 fully-connected layers with ReLU activation. Then 

softmax and bounding box regression are applied.  

After getting the final objects and ignoring those predicted as 

background, class-based NMS is applied.  

For the final list of objects, a probability threshold is set and a 

the limit on the number of objects per class is chosen. 

 

3.7.4 Loss function 

After combining all the models, the loss function consists of 4 

different losses (2 for RPN layer and 2 for RCNN). Those four 

losses are combined using a weighted sum, for being able to 

give one type of loss more weight than other ones. The loss 

function is defined as: 

 
is the log loss function over two classes. A multi-class 

classification can be easily translated into a binary 

classification by predicting a sample being a target or not. The 

regression (box) loss is defined as: 
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4 Methodology 

 

4.1 Dataset 

The dataset used in this project is the Singapore Maritime 

Dataset (SMD) [19]. The creators used several Canon 70D 

cameras to film around Singapore waters. All the videos 

acquired are in high definition, 1920x1080 pixels. The dataset 

was divided into parts: 40 on-shore videos taken from the 

shore and 4 on-board videos taken from a moving vessel. For 

each frame the creators annotated the horizon and object 

bounding boxes, and that is why this dataset is suitable for 

object detection. Moreover, the dataset contains 30 videos shot 

on a near-IR camera, which we did not use. 

 

4 videos had no object annotation files, therefore 36 videos 

were used. Theon-board videos were not used, because they 

were very unstable, the camera was trembling. All the 

individual frames were extracted from the videos and saved as 

JPEG images. Next, the annotations were converted from the 

".mat" format and saved in XML/TEXT files, depending on 

the architecture in use. Afterwards,  each tenth frame was left 

behind and as a result it lowered the image number from 

17967 to 1796. The videos were captured in 30 frames-per-

second, thus some data could be discarded as there was a 

similarity between consecutive frames.   

 

In order to demonstrate our solution's results, we videotaped 3 

videos in  different parts of the port of Haifa during different 

weather conditions and extracted a number of frames as a 

minitest set. These will be used mainly for the visual test, as 

they are not annotated. 

 

4.2 Base network 

For the base architecture in training Faster RCNN VGG-16 

was chosen. In was developed in 2014 at the Oxford 

University in England [20]. As the name suggests, it consists 

of 16 layers- by today’s standards it would not be considered 

very deep, but at that time it more than doubled the number of 

layers commonly used and kick started the “deeper = better” 

wave. 

The input has to be of size 224x224x3 and is passed through 

16 layers.  

 

The VGG-16 at the base was pre-trained on ImageNet dataset. 

This technique is called Transfer Learning and it is commonly 

used for training a classifier on a small dataset using the 

weights of a network trained on a bigger dataset. It is a 

common practice to always load pre-trained weights into the 

model and avoid using random weights, as it helps the 

network to converge. These weights, even if the dataset is 

entirely different, help the lower level feature maps "learn" 

better and faster. 

 

4.3 Preprocessing and Training 

The architectures were trained using fine-tuned parameters 

and for each one we calculated the mean average precision 

(mAP) and the FPS (Frame per Second). From the FPS 

measurements we can infer if an algorithm can be used in real-

time applications.  

 

After extracting the frames, we randomly selected 80% of the 

data for training and 20% for validation. As a result, 1436 

images were considered as training and 360 were considered 

as validation. 

 

The faster RCNN framework was written using Keras (a high-

level API running on top of tensorflow). Before starting, we 

opened the .mat files and saved each bounding box annotation 

in a corresponding text file for training/validation. Every row 

is a different bounding box in an image (an image can have 

many bounding boxes) and has the image name, class name 

and 4 coordinates. Later, we loaded weights of a VGG16 

trained on ImageNet.  

 

In order to work with YOLOv3, we used the Darknet API, 

written by YOLO's creator Joseph Redmon [21]. A large 

folder containing the images and annotation files was created, 

in which each annotation file is a text file that corresponds to 

one image in the dataset. In each file we wrote a list of the 

object bounding boxes: class names and coordinates. Then, 

created two text files: train.txt and test.txt each containing a 

list of images (from the 80-20 split).  

 

A common deep-learning metric is epochs, which is the 

number of the full dataset passes through the network. We 

chose to train for 20 epochs, because our training dataset 

consist of only 1436 images. Iterations are basically epochs 

multiplied by the steps-per-epoch (1436 steps). 

 

The hardware we used was a 4-core Intel CPU, 16GB of RAM 

and a Tesla K80 GPU, running on an Ubuntu 16.04 VM in 

Google's GCP. 

 

 

 

5 Results 

We evaluate the models using mAP with the VOC 2007 

format, as described in the Theory chapter. In addition, we 

measure the time the algorithm takes to predict bounding 

boxes on a single image, and from that we get the FPS. Each 

network is trained for 28,720 epochs. The IoU threshold is 0.5, 

meaning each detection over 0.5 confidence is considered. 

 

Architecture % mAP FPS 

Faster RCNN 89.5 2 

YOLOv3 79.2 25 

Table 1: Results comparison 

 

Presented here are the predictions of YOLOv3 model on 3 

examples of the mini test set images taken in the port of Haifa- 

the videos that were not included in the dataset. 
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Figure 4: detection result from video 1, the framework 

detected 2 types of ships. 

 

 
Figure 5: detection results from video 2, the framework again 

discriminated correctly between the 2 types of ships. 

 

 
Figure 6: detection results from video 3, where a small 

speedboat is detected, but the environment around it is 

classified incorrectly. 

 

We see that the framework can detect large ships and classify 

them by type. Almost all the ships we can see are detected, 

except the far away ones. We tested the results with small 

ships. 

 

 
Figure 7: another detection results from video 3, the small 

speedboat is not detected. 

 

In this example, the algorithm detects false alarms and can not 

find the speedboat. Small boats are detected sometimes but not 

in a reliable manner, because of the high-resolution videos and 

the lack of data for this category in the dataset. 

 

 

6 Conclusions  

 

Using Deep Learning in object detection yields good results 

when aiming for the detection of large vessels. Our system can 

be implemented on a real-time video feed using the YOLOv3 

framework, however for it to be faster (30+ FPS) we need a 

GPU with more V-RAM (GPU memory) or 2/4 GPUs running 

in parallel. We showed that Faster RCNN has the highest 

accuracy, while being the slowest, as we expected.  

 

Recommendations for future work: 

1. In order to improve the results on smaller ships, we must 

add more data and thus represent this category better in the 

dataset.  

2. Use a stronger GPU, or several GPUs, to improve the FPS 

on a real-time video feed. 
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