

18

International Journal of Data Science and Advanced Analytics

Vol: 1 Issue: 1

Abstract— In this paper, we present real-time object identification algorithm, that can be implemented in the motion

planning in Autonomous Surface Vehicles (ASV) at sea based on Faster Regional Convolutional Neural Networks

(RCNN) model. These vehicles' control algorithms and path planning systems depend heavily on the surrounding area

and the objects in sight, thus perception capability in near field is crucial for ASV's safety. Such systems can also be used

for security applications, maritime traffic control and port management. The dataset we used consists of thirty six videos,

captured in HD resolution, moreover, we shot another 3 videos for visual testing. We trained a Faster RCNN model in

addition to a YOLOv3 model and compared the results. The first framework gave the best results while being the slowest,

while the second one was fast and slightly less accurate. We showed that such a system can be implemented on a real-time

camera feed and can be used as a part of the developments of an ASV as integral part of path planner for ASV .

Keywords—Object detection; Neural Networks; Marine Transportation; Unmanned Autonomous Vehicles

1 Introduction

With the recent advances in Deep Learning in general and

object detection in particular, in addition to the recent growth

in learning algorithms, sparked the research focused on

combining the two systems – computer vision and path

planning.

These systems have been studied for decades. Most of the

algorithms we use today were developed in the past but had

not succeeded then because of the lack of data and computing

power. Nowadays, we see improvements every year, as

computers gain more power and more complex methods are

developed. One type of algorithm that really thrived in recent

years is Neural Networks. In the last few years, Neural

Networks were responsible for all the advancements in the

field of computer vision. When scientist and researchers sat

down to tackle the problems of object detection using Neural

Networks, they created RCNN [1] - Regional Convolutional

Neural Networks. After 3 years, Faster RCNN [2] was created,

which not only detected objects faster, but also had very high

accuracy. Concurrently, two more frameworks were being

developed – YOLO [3] and SSD [4], each having several

versions. Although these frameworks are faster than RCNN

and its ancestors, the accuracy is lower. These 3 networks are

the main competitors today, YOLO being the only one that

can sustain a real-time workload.

A vision-based robot navigation system is one that allows an

autonomous robot to move throughout its environment under

constrains, such as avoiding obstacles. The availability of low

cost, low power cameras and high speed SOCs (system on a

chip) are the main reasons for the rapid development and

growth of image sensor applications in motion and path

planning. A mobile robot navigation system based on vision

can be divided into indoor and outdoor type of navigation. The

former can be a map-based or a mapless form of navigation,

while the latter depends whether it is a structured or an

unstructured environment. Both use object detection and

tracking.

In this project we performed detection on onboard/onshore

video streams for the use of an autonomous ship motion

planner around ports and docks. One of main the requirements

here is the ability to operate at a real-time rate, running on a

live video feed without much delay. We trained two largely

known frameworks to be used for object detection in the

future development of the ASV.

2 Materials and Methods

Before the rapid growth in learning algorithms in recent years,

computer vision problems were solved by using classic

mathematical models and algorithms. Object detection, in

particular, was an important area of research because of the

tremendous amount of real-world applications that require

using it.

2.1 Classic approach

The classic approach for extracting ships from camera images

is to segment the image using a segmentation algorithm and

then to do a form of texture and shape analysis [5]. Another

approach that was popular is focused on calculating image

correlation between two images, in video-streams [6]. More

ways and approaches were developed through the years.

Krüger and Orlov [7] developed a whole system to

automatically detect and track distant vessels in the images

generated by the thermal or visual imager. It consists of a

camera, pan-tilt unit, inertial measurement unit and image

Object Identification in Maritime Environments for ASV Path Planner

 Oren Gal1, Sean Levy1
1Technion. Israel Institute of Technology, Haifa

email: orengal@technion.ac.il

Received: 25-Aug-19; Accepted: 08-Sep-19; Published: 08-Sep-19

Corresponding author email: orengal@technion.ac.il

19

International Journal of Data Science and Advanced Analytics

Vol: 1 Issue: 1

exploitation computer. The first layer in the model calculates

an estimation of camera orientation, using a Kalman filter on

the raw data to estimate time-varying pitch and roll angles.

The second layer uses the results prior to localize the horizon

line in the images. The third layer is the boat detection layer. It

uses the information about the horizon line to set up search

areas for the algorithms and stabilize the image. The

framework utilizes track-before detect algorithm using blobs,

detection exploiting stable image regions and detection based

on tracking salient image points. The fourth layer generates

the detections.

Object detection in 4K video was the subject of [8]. The

advantage of this higher resolution is providing more

information in the harsh sea conditions. An alternative way of

exploiting rigidity analysis (segmentation of a multi-body

fundamental matrix) was proposed by using keypoint tracking.

The first stages use a SIFT descriptor to find keypoint objects,

and then perform some image processing in order to identity

full object zones. Later, PCA is applied to extract the main

directions of textural variation. The detection is achieved by

merging image blocks ranked as object by the texture

discrimination algorithm and containing one stable SIFT

keypoint. Furthermore, the algorithm is implemented over

multiple resolutions of the same image.

2.2 Deep Learning approach

Many researchers in this field started using deep learning and

neural networks, some implementing existing ones and some

creating new architectures based on known ones. When

performing object detection with deep learning there are

several facts to be aware of:

1. The need for a large dataset

2. Preferably a large variety of objects should be used to

increase the strength of the algorithm.

In [10] transfer learning is applied to improve the results over

a small dataset. Training a CNN using random parameter

initialization with a small dataset will results in low

performance. In such situations, transfer learning is

implemented – the last fully connected layer of the network is

replaced and retrained with the new data. A CNN based on

Inception and ResNet models was trained on the ImageNet

database. Then the pre-trained network was fine-tuned with

the MARVEL dataset. After training several times and

choosing the right hyper-parameters, the top accuracy was

around 78%. In [11] a Faster RCNN network detects the

objects. The authors built a sequence for the bounding boxes

using the boxes returned from the network, the sequence is

gathered over time and combined by a Bayesian fusion. It is

assumed that the target ships do not move rapidly, therefore in

each time step the bounding box with the largest IoU is

selected. Moreover, an offset to the sequence was added,

which was calculated between consecutive frames. The dataset

used in this paper was collected manually from Google images

- 7000 images of 7 classes - and annotated. The single image

detection result was 94.65% (mAP) and when tested on seven

video clips from YouTube the accuracy was 93.92%.M. H.

Zwemer et al. [12] used an SSD framework to improve a

visual tracking system. An SSD512 model detects the objects

at 5 frames per second. This model takes as an input 512x512

images, thus it’s unique name. After object detection is

performed on the input image, the obtained vessel coordinates

are converted to GPS coordinates using the camera

calibration.. To create trajectories over time, visual tracking is

performed by feature points. A total of 48966 image were

collected from video footage. The authors used transfer

learning with a VGG16 network to train the single shot

decoder and reached 88% (mAP) accuracy.

Vision-based robot navigation requires mapping of the sensory

signals to motion control commands, which involves complex

feature processing in environmental perception. The classic

methods for this task do not take advantage of learning

algorithms and use computer vision algorithms. In [13] stereo

disparity was used to find the 1d displacement of

corresponding pixels in the two images. Then, using disparity-

based segmentation, seed points are found which are then used

to determine the location of obstacles. A path planner was

implemented based on the path cost.

2.3 DRL and path planning

Recent Deep Reinforcement Learning models provide an end-

to-end framework for transforming pixel information into

actions. In [14], the method developed tackles the problem of

navigating a space to find a given target goal using only visual

input. To train and evaluate the model, a new simulation

framework with high-quality 3D scenes was developed, called

The House Of inteRactions (AI2-THOR), which is designed

by integrating the Unity 3D physics engine with Tensorflow.

The model is a deep reinforcement learning model that takes

as input an RGB image of the current observation and another

RGB image of the target. The output of the model is an action

in 3D such as move forward or turn right. It’s worth noting

that model is based on a Deep Siamese Network which is a

type of two-stream neural network. Information from both

embeddings is fused to form a joint single representation. This

joint representation is passed through scene-specific layers

(room layouts and object arrangements), andthen the model

generates policy and value outputs. In training phase,the

framework ran several copies of training threads in parallel,

but instead of running copies of a single game, every agent got

a different navigation target. In [15], a motorized wheelchair

was equipped with a front facing camera and a few LIDARs

providing a 270 degrees coverage of objects present in the

area surrounding the system. The visual path prediction

system uses a YOLOv2 net [16], which recognizes 80

different classes and provides a bounding box around the

object in the image. Each bounding box is accompanied with a

label, top, bottom, right, left coordinates and the prediction

confidence. Then the system adjusts the Lidar and vision data

frames to overlay the field of views of one another, converts

the image resolution to that of the scan resolution and matches

the two frames.

20

International Journal of Data Science and Advanced Analytics

Vol: 1 Issue: 1

These works inspired us to develop a system that will be

implemented on an unmanned ship, and will be used as an

integral part of the path planning algorithm.

3 Preliminaries

3.1 Basic object detection metrics

When evaluating object detection, we come across two

different result measurements:

1. Classification- whether an object exists in the image

2. Localization- finding the location of the object

In large datasets there are many classes and thus we cannot

use simple accuracy-based metrics. That is why object

detection algorithms introduce new metrics.

3.1.1 Intersection Over Union

In order to decide whether the predicted bounding box is

accurate and measure the prediction accuracy we use

Intersection over Union (IoU). Using this algorithm, we

calculate the area of the IoU of the ground truth box and the

framework's prediction. We choose a threshold and then we

can decide which bounding boxes will be selected and which

will be discarded. The IoU’s formula is given by:

3.1.2 Non-maximum suppression

There is another approach that can improve our results called

NMS. This is extremely useful when we want to eliminate

multiple boxes around one object. Given the probabilities

associated with each detection one having the best results is

selected.

3.1.3 Average Precision and mAP

There are two main components to the Average Precision:

1. Precision- the ratio of the true object bounding box

detections to the total number of bounding boxes

predicted (on a single image).

2. Recall- the ratio of the true bounding box detections

to the total number of bounding boxes present in the

dataset.

In order to calculate the Average Precision, we create a

precision-recall curve for each of the classes. For each class

we look at all the outputs when using the dataset and all the

ground-truths. Then, we loop over 11 recall values, find the

maximum precision there and then compute the average.

The AP across all the classes in the dataset is an average on all

the AP values, and it is called Mean Average Precision, or

mAP. mAP is the main parameter for evaluating object

detection algorithms. Different datasets (VOC/COCO) add

their own rules for the evaluation, i.e. what is considered a

true prediction based on IoU, therefore there are several

formats. It is important to note that one format can give a

higher score or a lower one depending on the task itself. The

calculation using the 11 precision-recall values is used in the

PASCAL VOC 2007 format.

3.2 YOLO – You Only Look Once

The YOLO architecture [3] is widely used today in real-time

applications. It takes an entire image at once and predicts the

bounding boxes coordinates and class probabilities for these

boxes. Thusthe high speed of operation. At the beginning, the

framework takes an input image and divides it to a grid

(normally 11 by 11 grid). Then, the net classifies each grid

image and localizes it, from which YOLO predicts the

bounding boxes and their class scores.

3.2.1 Anchor boxes

When a new object is assigned to a new grid (in this

framework in each grid only one object is identifiable), the

mid-point of the object is taken and assigned to the

corresponding grid based on its location. In the case there are

two midpoints of two objects lie in the same grid, only one of

them will be selected. To solve this problem, Anchor Boxes

are used. Two different shapes are predefined, and for each

grid there will be two results. In practice, we use more than

two shapes. The object is assigned to the bounding boxes

based on the similarity between them and the anchor boxes'

shape.

The YOLO training composes of 2 phases. First, a classifier

network like VGG16 is trained. Then the fully connected

layers are replaced with a convolution layer and retrain it end-

to-end for the object detection. During training, the framework

takes an image and maps it with a target- depends on the grid

size, number of anchor boxes and number of classes. While

testing, the input image will be divided by same grid size.

Finally, Non-Maximum Suppression will be applied to obtain

only one bounding box per object.

3.2.2 Loss function

During training the loss function is optimized to improve the

predictions of the network. The loss function formula is:

21

International Journal of Data Science and Advanced Analytics

Vol: 1 Issue: 1

The parameter 𝜆 is used to differently weight parts of the loss

function. The first line computes the loss of the predicted

bounding box position. It is a sum over each bounding box 𝑗

of each grid cell 𝑖. 1𝑜𝑏𝑗 is 1 if an object is present in grid cell

𝑖 and bounding box 𝑗 is around it. It is zero otherwise. The

second line is the loss related to the predicted box width and

height. We use square root to account for small deviations in

large boxes. The third line is responsible for calculation of the

loss associated with the confidence sore for each box. 1𝑛𝑜𝑜𝑏𝑗

is the opposite of 1𝑜𝑏𝑗. The fourth part is the classification

loss. It is written like a regular sum-squared error and the 1𝑜𝑏𝑗

parameter is used to not penalize classification error when

there is no object in the grid cell.

3.3 YOLOv2

YOLOv2 is the second version of YOLO, improving the

accuracy and speed of the notorious framework. The new

architecture uses a model named Darknet-19 which is similar

to VGG models by using 3x3 convolutional filters and doubles

the number of channels after every pooling layer. Several new

adaptations are made to increase the accuracy:

3.3.1 Batch normalization

A technique widely used while working with CNN's. It works

by using small batches of the data in training. Removes the

need for dropout layers (where neurons are deleted).

3.3.2 High resolution classifier

YOLOv2 trains using 224×224 images, and also uses 448×448

images for fine-tuning the classification network for 10

epochs.

3.3.3 Convolution and anchor boxes

YOLO makes arbitrary guesses on the size and shape of the

boundary boxes. These guesses may work for some cases but

not for others. Hence, if the model starts with diverse guesses

that are common for real-life objects the training will be more

stable. N anchor boxes are created, with certain shapes, and

the model predicts offsets of each of them. The the input size

was changed from 448x448 to 416x416 to create an odd

number of spatial dimensions, because the center of the image

often contains an object and it will be easier detecting. The

authors removed one pooing layer to make the spatial output

of the network 13x13, downsampling by 32

3.3.4 Dimension clusters

By using anchor boxes, two issues were found: the first one

was that the bounding box dimensions were hand-picked, and

while the network could learn to adjust those boxes it really

depended on the anchors picked, better picked ones resulted in

better performance. The suggested way is to use k-means

clustering on the training set bounding boxes to find the

centroids of the top-K clusters.

Using standard Euclidean distance-based k-means clustering is

not good enough, thus the distance metric used is:

When the number of anchors increases, the accuracy plateaus.

The authors chose 5 anchors –it was found as a good

compromise.

3.3.5 Direct location prediction

The second problem with anchor boxes was model instability

during early iterations. The main reason was the formulation

used in the original YOLO–it was unconstrained and any box

could end up at any point in the image, despite the location

that predicted the box. To fix this the authorsgave predictions

on the offsets to the anchors. YOLO predicts 5 bounding

boxes at each grid cell in the output, or more specifically 5

sets of 5 parameters 𝑡𝑥, 𝑡𝑦 , 𝑡𝑤, 𝑡ℎ, 𝑡𝑜 and applies 𝜎 (sigma

function, value between 0-1):

Figure 1: YOLOv2 anchors [16]

(𝑏𝑥, 𝑏𝑦) is the location of the bbox; (𝑝𝑤 , 𝑝ℎ) is the anchor

3.3.6 Fine-grained features

YOLOv2 uses a passthrough layer which concatenates the

higher resolution features with the low-resolution features by

stacking them in order to detect smaller objects

3.3.7 Multi-scale training

YOLOv2 downsamples the input by 32 in the last layer, and

after removing the fully connected layers it can take images of

different sizes. Instead of fixing the input image size each

time, every 10 batches the model selects a size randomly, in

the condition that it is a multiple of 32 (i.e. 320x320, 352x352,

22

International Journal of Data Science and Advanced Analytics

Vol: 1 Issue: 1

the final one being 608x608). This forces the network to learn

to predict accurately across a variety of input dimensions.

YOLO9000 [16] uses the YOLOv2 architecture to detect 9000

object classes using hierarchical classification. It combines

samples from COCO and the top 9000 classes from the

ImageNet by taking four ImageNet images for every COCO

image. It learns to find objects using the detection data in

COCO and to classify these objects with ImageNet samples.

3.4 YOLOv3

YOLOv3 [17] comes as an improvement to YOLOv2 when

the latter failed in comparison to other methods of object

detection, like RetinaNet and SSD. The creators give up the

speed in order to improve the accuracy. YOLOv2 architecture

lacks some important features that are considered as a state of

the art in the way for good results, which are residual

connections and upsampling. The main base network is

darknet53. It is trained on ImageNet with 53 layers, and then

53 more layers are added for the process of detection alone.

Darknet53 has less BFLOPS (billion floating point operations)

than ResNet-152, but achieves the same classification

accuracy faster.

The new architecture makes detections at three different scales

– down sampling the input image dimensions by 32,16,8.

Objects are detected in 3 different sizes features maps at three

different locations in the network. The different layers help

address the issue of detecting small objects. The low-

resolution layers are responsible for detecting the large

objects, whereas the large resolution ones should detect

smaller objects. To set the anchors YOLOv3 applies k-means

clustering, from which it selects 9 clusters- three for each

scale. To obtain the multi-scale detection it assigns the three

biggest anchors for the first scale, the next three for the second

one and the last three for the third. That is why YOLOv3

predicts 10 times more the number of boxes that YOLOv2

predicts.

3.4.1 Predictions

The framework makes 3 predictions per location. Each

prediction consists of boundary box, an objectness and class

scores. The pipeline makes predictions at three different

scales:

1. In the last feature map layer

2. It goes back and upsamples features by 2. Later, it

takes a higher resolution feature map and combines

them together. Then convolutional filters are applied

on the new data to make the second set of

predictions.

3. It repeats stage 2 so the resulted feature map layer

has better high-level information.

3.4.2 Classes

Originally, a YOLO framework applied a softmax function

layer to convert scores into probabilities. In contrary,

YOLOv3 uses an independent logistic classifier (called also

logistics regression) to calculate the score for the class-label

pair. Instead of using mean square error in evaluating the loss,

it uses binary cross-entropy loss. A threshold is used to predict

multiple labels for an object.

3.4.3 Bounding-box prediction

The authors of YOLOv3 changed the way of calculating the

cost function. Each ground truth object is associated with one

boundary box prior only, if a bounding box is not assigned,

only confidence loss is calculated, skipping classification loss

and localization loss.

Figure 2: Darknet53 base model [17]

3.5 RCNN- Regional CNN

RCNN [1] is the first step towards Faster RCNN. The

proposed method uses a naive algorithm called Selective

Search to extract 2000 regions from the input image by

combining similar pixes based on values and textures. Later,

these 2,000 areas pass to a pre-trained CNN model. The

outputs (feature maps) are then passed to a SVM for

classification. The regression between predicted bounding

boxes and ground-truth boxes are computed. The problem

with RCNN is that the not only the training (and testing) is

very slow because it has to classify 2000 region proposals per

image, but also the selective search algorithm is a primitive

one, and can be improved.

23

International Journal of Data Science and Advanced Analytics

Vol: 1 Issue: 1

3.6 Fast RCNN

A year later,one of the creators who created RCNN, wrote a

better version of the algorithm called Fast RCNN [18]. Instead

of feeding the region proposals to the CNN, it feeds the input

image to the CNN to generate feature maps. Then, using

selective search on those feature maps the identified regions of

proposals are wrapped into squares by using a ROI Pooling

layer. These outputs are passed to a fully connected layer as

inputs, and finally two output vectors are used to predict the

object dimensions with a softmax classifier and adapt the

bounding box locations with a linear regressor. This

framework is faster than it's predecessor, but when inspecting

the results selective search slows down the algorithm, is less

accurate and is a major bottleneck.

3.7 Faster RCNN

Faster RCNN fixes the problem of selective search by

replacing it with a Region Proposal Network (RPN) [3]. Itis

the third official iteration of RCNN. Like Fast RCNN, the

image is provided as an input to a CNN which outputs a

feature map.

3.7.1 Anchors

Using the features that the CNN computed, the RPN is used to

find a predefined number of regions (bounding boxes), which

may contain objects. Those bounding boxes have predefined

shapes and sizes and are called Anchors (just like in YOLO).

In the default configuration of Faster R-CNN, there are 9

anchors at a single position in an image – 3 different sizes

(e.g. 128,256,512) at three different ratios (e.g.1:2,1:1,2:1).

Each point in the computed feature map is considered as an

anchor, and a set of anchors for it is created. Even though

anchors are defined based on the convolutional feature map,

the final anchors reference the original image.

Figure 3: Faster RCNN model, consist of 2 networks running

in parallel to each other and then fed to a Fast RCNN [19]

3.7.2 Region Proposal Network – RPN

RPN proposes objects by having two different outputs for each

of the anchors. The first output is the probability that an

anchor is an object, not depending on class - this score is used

to filter out the bad predictions. The second output is the

bounding box regression, in order of adjust the anchors. The

RPN is connected to a convolutional layer with 3x3 filters, 1

padding, 512 output channels. The output is connected to two

1x1 convolutional layers for classification and box-regression.

At the same time, non-maximum suppression is applied to

make sure there is no overlapping between the proposed

regions.

3.7.3 ROI Pooling

After the previous step, the model has several object proposals

with no class assigned to them. Instead of taking each

proposal, cropping it, and running it through the network,

Faster RCNN reuses existing feature maps. This is done by

extracting fixed-size feature maps for each proposal using

region of interest (ROI) pooling.

The final step in the Faster RCNN's pipeline is to use the

features extracted from the ROI pooling layer for

classification. The last two goals:

1. Classify object proposals into classes

2. Adjust the bounding box dimensions

The algorithm flattens the feature map for each proposal and

uses 2 fully-connected layers with ReLU activation. Then

softmax and bounding box regression are applied.

After getting the final objects and ignoring those predicted as

background, class-based NMS is applied.

For the final list of objects, a probability threshold is set and a

the limit on the number of objects per class is chosen.

3.7.4 Loss function

After combining all the models, the loss function consists of 4

different losses (2 for RPN layer and 2 for RCNN). Those four

losses are combined using a weighted sum, for being able to

give one type of loss more weight than other ones. The loss

function is defined as:

is the log loss function over two classes. A multi-class

classification can be easily translated into a binary

classification by predicting a sample being a target or not. The

regression (box) loss is defined as:

24

International Journal of Data Science and Advanced Analytics

Vol: 1 Issue: 1

4 Methodology

4.1 Dataset

The dataset used in this project is the Singapore Maritime

Dataset (SMD) [19]. The creators used several Canon 70D

cameras to film around Singapore waters. All the videos

acquired are in high definition, 1920x1080 pixels. The dataset

was divided into parts: 40 on-shore videos taken from the

shore and 4 on-board videos taken from a moving vessel. For

each frame the creators annotated the horizon and object

bounding boxes, and that is why this dataset is suitable for

object detection. Moreover, the dataset contains 30 videos shot

on a near-IR camera, which we did not use.

4 videos had no object annotation files, therefore 36 videos

were used. Theon-board videos were not used, because they

were very unstable, the camera was trembling. All the

individual frames were extracted from the videos and saved as

JPEG images. Next, the annotations were converted from the

".mat" format and saved in XML/TEXT files, depending on

the architecture in use. Afterwards, each tenth frame was left

behind and as a result it lowered the image number from

17967 to 1796. The videos were captured in 30 frames-per-

second, thus some data could be discarded as there was a

similarity between consecutive frames.

In order to demonstrate our solution's results, we videotaped 3

videos in different parts of the port of Haifa during different

weather conditions and extracted a number of frames as a

minitest set. These will be used mainly for the visual test, as

they are not annotated.

4.2 Base network

For the base architecture in training Faster RCNN VGG-16

was chosen. In was developed in 2014 at the Oxford

University in England [20]. As the name suggests, it consists

of 16 layers- by today’s standards it would not be considered

very deep, but at that time it more than doubled the number of

layers commonly used and kick started the “deeper = better”

wave.

The input has to be of size 224x224x3 and is passed through

16 layers.

The VGG-16 at the base was pre-trained on ImageNet dataset.

This technique is called Transfer Learning and it is commonly

used for training a classifier on a small dataset using the

weights of a network trained on a bigger dataset. It is a

common practice to always load pre-trained weights into the

model and avoid using random weights, as it helps the

network to converge. These weights, even if the dataset is

entirely different, help the lower level feature maps "learn"

better and faster.

4.3 Preprocessing and Training

The architectures were trained using fine-tuned parameters

and for each one we calculated the mean average precision

(mAP) and the FPS (Frame per Second). From the FPS

measurements we can infer if an algorithm can be used in real-

time applications.

After extracting the frames, we randomly selected 80% of the

data for training and 20% for validation. As a result, 1436

images were considered as training and 360 were considered

as validation.

The faster RCNN framework was written using Keras (a high-

level API running on top of tensorflow). Before starting, we

opened the .mat files and saved each bounding box annotation

in a corresponding text file for training/validation. Every row

is a different bounding box in an image (an image can have

many bounding boxes) and has the image name, class name

and 4 coordinates. Later, we loaded weights of a VGG16

trained on ImageNet.

In order to work with YOLOv3, we used the Darknet API,

written by YOLO's creator Joseph Redmon [21]. A large

folder containing the images and annotation files was created,

in which each annotation file is a text file that corresponds to

one image in the dataset. In each file we wrote a list of the

object bounding boxes: class names and coordinates. Then,

created two text files: train.txt and test.txt each containing a

list of images (from the 80-20 split).

A common deep-learning metric is epochs, which is the

number of the full dataset passes through the network. We

chose to train for 20 epochs, because our training dataset

consist of only 1436 images. Iterations are basically epochs

multiplied by the steps-per-epoch (1436 steps).

The hardware we used was a 4-core Intel CPU, 16GB of RAM

and a Tesla K80 GPU, running on an Ubuntu 16.04 VM in

Google's GCP.

5 Results

We evaluate the models using mAP with the VOC 2007

format, as described in the Theory chapter. In addition, we

measure the time the algorithm takes to predict bounding

boxes on a single image, and from that we get the FPS. Each

network is trained for 28,720 epochs. The IoU threshold is 0.5,

meaning each detection over 0.5 confidence is considered.

Architecture % mAP FPS

Faster RCNN 89.5 2

YOLOv3 79.2 25

Table 1: Results comparison

Presented here are the predictions of YOLOv3 model on 3

examples of the mini test set images taken in the port of Haifa-

the videos that were not included in the dataset.

25

International Journal of Data Science and Advanced Analytics

Vol: 1 Issue: 1

Figure 4: detection result from video 1, the framework

detected 2 types of ships.

Figure 5: detection results from video 2, the framework again

discriminated correctly between the 2 types of ships.

Figure 6: detection results from video 3, where a small

speedboat is detected, but the environment around it is

classified incorrectly.

We see that the framework can detect large ships and classify

them by type. Almost all the ships we can see are detected,

except the far away ones. We tested the results with small

ships.

Figure 7: another detection results from video 3, the small

speedboat is not detected.

In this example, the algorithm detects false alarms and can not

find the speedboat. Small boats are detected sometimes but not

in a reliable manner, because of the high-resolution videos and

the lack of data for this category in the dataset.

6 Conclusions

Using Deep Learning in object detection yields good results

when aiming for the detection of large vessels. Our system can

be implemented on a real-time video feed using the YOLOv3

framework, however for it to be faster (30+ FPS) we need a

GPU with more V-RAM (GPU memory) or 2/4 GPUs running

in parallel. We showed that Faster RCNN has the highest

accuracy, while being the slowest, as we expected.

Recommendations for future work:

1. In order to improve the results on smaller ships, we must

add more data and thus represent this category better in the

dataset.

2. Use a stronger GPU, or several GPUs, to improve the FPS

on a real-time video feed.

References
[1] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich Feature

Hierarchies for Accurate Object Detection and Semantic Segmentation,"
2014 IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, 2014, pp. 580-587.

[2] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks," in IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no.
6, pp. 1137-1149, 1 June 2017.

[3] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look
Once: Unified, Real-Time Object Detection," 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
2016, pp. 779-788.

[4] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A.
C. Berg, “SSD: Single Shot MultiBox Detector,” Computer Vision –
ECCV 2016 Lecture Notes in Computer Science, pp. 21–37, 2016.

[5] M. Selvi and S. S. Kumar, "A Novel Approach for Ship Recognition
using Shape and Texture," International Journal of Advanced
Information Technology (IJAIT), vol. 1, no. 5, 2011.

[6] A. Kadyrov, H. Yu and H. Liu, "Ship Detection and Segmentation Using
Image Correlation," 2013 IEEE International Conference on Systems,
Man, and Cybernetics, Manchester, 2013, pp. 3119-3126.

26

International Journal of Data Science and Advanced Analytics

Vol: 1 Issue: 1

[7] W. Krüger and Z. Orlov, "Robust layer-based boat detection and multi-
target-tracking in maritime environments," 2010 International WaterSide
Security Conference, Carrara, 2010, pp. 1-7.

[8] V. Marie, I. Bechar and F. Bouchara, "Towards Maritime
Videosurveillance Using 4K Video," in Lecture Notes in Computer
Science, 2018, pp. 123-133.

[9] X. Yang et al., "Automatic Ship detection of remote sensing images
from google images in complex scenes based on multi scale rotation
dense feature pyramid networks," Remote Sensing, vol. 10, no. 1, p.
132, 2018.

[10] M. Leclerc, R. Tharmarasa, M. C. Florea, A. Boury-Brisset, T.
Kirubarajan and N. Duclos-Hindié, "Ship Classification Using Deep
Learning Techniques for Maritime Target Tracking," 2018 21st
International Conference on Information Fusion (FUSION), Cambridge,
2018, pp. 737-744.

[11] K. Kim et al., "Probabilistic Ship Detection and Classification Using
Deep Learning," Applied Sciences, vol. 8, no. 6, 2018.

[12] M. Zwemer, R. G. J. Wijnhoven, P. H. N. de With, ”Ship detection in
harbour surveillance based on large-Scale data and CNNs,” VISIGRAPP
2018. Vol. 5, 2018. pp. 153-160.

[13] B. Hummel, S. Kammel, Thao Dang, C. Duchow and C. Stiller, "Vision-
based path-planning in unstructured environments," 2006 IEEE
Intelligent Vehicles Symposium, Tokyo, 2006, pp. 176-181.

[14] Y. Zhu et al., "Target-driven visual navigation in indoor scenes using
deep reinforcement learning," 2017 IEEE International Conference on
Robotics and Automation (ICRA), Singapore, 2017, pp. 3357-3364.

[15] R. M. Kangutkar, "Obstacle Avoidance and Path Planning for Smart
Indoor Agents," M.S. thesis. Rochester Institute of Technology, 2017.
Available: RIT Scholar Works.

[16] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, 2017, pp. 6517-6525.

[17] J. Redmon, A. Farhadi, "YOLOv3: An Incremental Improvement,"
arXiv:1804.02767, 2018.

[18] R. Girshick, "Fast R-CNN," 2015 IEEE International Conference on
Computer Vision (ICCV), Santiago, 2015, pp. 1440-1448.

[19] D. K. Prasad, D. Rajan, L. Rachmawati, E. Rajabally and C. Quek,
"Video Processing From Electro-Optical Sensors for Object Detection
and Tracking in a Maritime Environment: A Survey," in IEEE
Transactions on Intelligent Transportation Systems, vol. 18, no. 8, pp.
1993-2016, Aug. 2017.

[20] [21] K. Simonyan and A. Zisserman, "Very Deep Convolutional
Networks for Large-Scale Image Recognition," arXiv:1409.1556, 2014.

[21] J. Redmon, "Darknet Neural Network Framework," [Online]. Available:
https://pjreddie.com/darknet/yolo/.

