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Abstract— The concept of climate change encompasses the profound impacts of global warming on Earth's weather systems, with 
contemporary changes far exceeding historical variations and predominantly driven by human-induced factors such as elevated levels 
of atmospheric greenhouse gases from activities like fossil fuel combustion and agriculture. Efforts by organizations like the United 
Nations are actively combating these changes. Within Earth's climatic framework, land surface temperature plays a pivotal role, 
influencing crucial processes like energy and water exchange between the surface and atmosphere, thereby affecting vegetation growth 
patterns. Accurate comprehension of global and regional land surface temperatures, coupled with factors like vegetation and soil 
moisture, aids in evaluating land surface-atmosphere interactions and serves as a valuable metric for surface conditions. 
This paper employs hierarchical time series forecasting to analyse and project land surface temperatures for major cities across 
countries. Hierarchical forecasting is essential when dealing with time series data aggregated hierarchically, ensuring a coherent 
approach to forecasting across different levels of granularity. By employing hierarchical time series forecasting, this research addresses 
the challenge of aggregating data to specific levels, ensuring consistency in temperature projections from city to country levels. 
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 Introduction  
1.1 Background 
Climate change, identified as the foremost health threat by the 
World Health Organization and health experts globally, 
necessitates urgent action to limit global temperature rise to 
1.5°C, as emphasized by the IPCC and various studies [1], [2], 
[3]. Despite the inevitability of some temperature increase due 
to past emissions, each tenth of a degree rise poses considerable 
risks to human health and well-being [4]. The correlation 
between economic growth and global warming is evident, with 
a notable increase in global temperatures mirroring the rise in 
global GDP from 1960 to 2019 [5]. Human-induced warming 
has already escalated by 1.0°C since pre-industrial times, with 
projections indicating a potential 1.5°C increase between 2030 
and 2050 [3]. Addressing this challenge demands substantial 
reductions in carbon dioxide emissions by 2030 to avert 
surpassing the critical 1.5°C threshold. Understanding and 
forecasting land surface temperatures in major cities of 85 
countries using hierarchical time series forecasting are crucial 
steps towards raising awareness of the imminent impacts of 
rising temperatures on health and ecosystems. 
 

 
1.2 Literature Review and Research Objective 
The global average temperature, a pivotal metric in climate 
research, provides crucial insights into Earth's energy balance 
dynamics despite its diverse temperature patterns. In [6], Lean 
and Rind's model predicts a notable temperature increase over 
the next two decades, emphasizing the complex interplay of 
natural and human influences on climate evolution. 
Observations post-1970 highlight a significant warming trend 
influenced by factors like greenhouse gas concentrations and 
volcanic activity, underscoring the dominant role of 
anthropogenic forces in driving long-term temperature shifts. 

Advances in satellite data analysis by Dash et al [7] and the 
development of high-resolution climate data by Karger et al. [8] 
further enhance our understanding of climate dynamics, 
emphasizing the need for continuous monitoring and predictive 
modeling in climate research. 
 
The escalating global temperatures, primarily driven by human 
activities, have intensified the greenhouse effect, leading to a 
surge in greenhouse gas emissions and a range of climate-
related impacts. In [4], an IPCC reports highlight the 
consequences of climate change on ecosystems and human life, 
necessitating urgent collective action to mitigate these effects. 
Recent research underscores the significant changes in Earth's 
heat content attributed to human-induced greenhouse gases, 
emphasizing the need for further investigation into factors 
influencing the Earth's climate system. Time series forecasting, 
crucial for strategic decision-making, continues to evolve with 
a focus on hierarchical time series forecasting techniques to 
ensure coherent and reliable predictions across complex 
hierarchical structures. 
 
The field of time series forecasting has witnessed significant 
progress over the past 25 years, with advancements in statistical 
methodologies and models. However, unresolved challenges 
persist, necessitating further exploration in areas such as 
multivariate techniques, nonlinear models, and robust statistical 
methodologies. Recent developments in non-Gaussian 
forecasting and prediction methods for discrete sample spaces 
present promising avenues for future research, driven by the 
availability of large datasets and advanced computational tools 
like neural networks. The synthesis of climate research and time 
series forecasting underscores the critical need for ongoing 
innovation and collaboration to address the complex challenges 
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posed by climate change and to enhance predictive capabilities 
for informed decision-making.  
 
 Many researchers scrutinize diverse time series forecasting 
techniques, comparing their efficacy across various domains. 
The authors of [9] investigate short, medium, and long-term 
forecasting methodologies, emphasizing the importance of 
understanding data characteristics and objectives for optimizing 
forecasting outcomes. Garima and Bhawna in [10] compare 
ARIMA and ETS models for weather forecasting, showcasing 
their application in predicting meteorological parameters and 
evaluating forecast precision. In [11], Chen et al. utilize 
SARIMA techniques to forecast monthly mean temperatures in 
Nanjing, achieving accurate predictions based on historical data 
analysis. Cerqueira et al. challenge the notion that machine 
learning surpasses traditional statistical methods in time series 
forecasting [12], emphasizing the nuanced relationship between 
sample size, model performance, and forecasting accuracy. 
These studies collectively enrich our understanding of time 
series forecasting methodologies across different applications 
and disciplines. 
 
 In the domain of climate analysis and forecasting, several 
studies delve into time series data intricacies, focusing on 
variables like temperature and precipitation. In [13], the authors 
scrutinize temperature and precipitation fluctuations in the 
Bhagirathi river basin using seasonal ARIMA, highlighting the 
efficacy of SARIMA models in predicting weather patterns. In 
[14], Papacharalampous et al. explore automated forecasting 
algorithms for monthly temperature and precipitation data, 
emphasizing the competitive forecasting capabilities of models 
like Prophet. Nury et al. underscore the utility of ARIMA 
models in predicting regional temperatures for environmental 
planning [15]. Yuchuan and David [16] develop an ARIMA-
based method for short-term temperature and precipitation 
trends, enhancing climate-aware decision-making. These 
studies collectively contribute to advancing our comprehension 
of climate dynamics and aiding informed decision-making 
amidst environmental changes. 
 
Hierarchical time series forecasting, organizing multiple time 
series into levels based on categories, presents challenges and 
opportunities for forecasting methods. Hyndman et al. propose 
a superior hierarchical forecasting approach that forecasts each 
series at every hierarchy level, reconciling forecasts using a 
regression model for accurate predictions aligning with the 
hierarchical structure [17]. In [18] and [19], subsequent works 
by Hyndman and colleagues enhance computational efficiency 
and covariance estimation for improved forecast reconciliation, 
underlining the significance of hierarchical time series 
forecasting in addressing complex challenges, notably in 
understanding and predicting climate change impacts on urban 
environments. These advancements emphasize the practicality 
and efficacy of hierarchical forecasting in handling intricate 
real-world forecasting tasks. 
 
The research projects discussed have largely overlooked 
hierarchical time series benefits, with only a few studies 

mentioning this approach. Our study uniquely explores all 
aspects of hierarchical time series models, crucial due to Earth's 
warming trend driven by human-induced greenhouse gas 
emissions. Urban areas, with their heat island effect and high 
population density, are particularly vulnerable to climate 
change impacts, yet many remain indifferent. Our study aims to 
forecast land surface temperatures in major cities globally to 
understand future implications, filling a gap in hierarchical time 
series forecasting often missed in existing research. 
 
Details of the proposed methodology are introduced in Section 
2. Results are evaluated and discussed in Section 3. Section 4 
concludes the work. 
 

 Methodology Framework 
Fig. 1 represents the methodology framework proposed in this 
paper. The methodology used entails crucial steps like selecting 
the target data, pre-processing the selected data, converting the 
data into a structured and understandable format, exploratory 
data analysis, creating a hierarchy, selecting a model and 
revision method, implementing hierarchical time series 
forecasting, and assessing the forecast's performance using 
evaluation measures.  

 
 

Fig.1. Flowchart of proposed research methodology 
 

 Data Description 
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The Lawrence Berkeley National Laboratory affiliate Berkeley 
Earth, initially known as the Berkeley Earth Surface 
Temperature project, was founded in early 2010 to address 
concerns surrounding global warming and the instrumental 
temperature record. Utilizing preliminary results and datasets 
from Berkeley Earth, available on platforms like Kaggle, our 
study delved into the analysis of terrestrial temperature data for 
climatological research. The dataset examined encompassed 
monthly average land surface temperatures of major cities in 
159 countries worldwide from 1743 to 2013, providing a 
comprehensive geographical breakdown by country and city, 
complete with longitude and latitude coordinates. Data 
preprocessing was essential due to null values within the 
dataset, following which exploratory data analysis techniques 
were employed to extract valuable insights. 
 
By leveraging the rich dataset sourced from Berkeley Earth, our 
investigation aimed to contribute to the understanding of global 
temperature trends and patterns. The data's temporal and 
geographical scope offered a unique opportunity to explore 
long-term temperature variations across major cities, 
facilitating a deeper comprehension of climatic dynamics at 
both local and global scales. Through meticulous data cleaning 
and exploratory analysis, our study sought to unveil hidden 
trends and correlations within the dataset, ultimately enhancing 
our knowledge of terrestrial temperature variations and their 
implications for climate research and policy-making. 
 

 Hierarchical Time Series 
In hierarchical time series forecasting, data is collected or 
aggregated at multiple levels in a hierarchical structure, 
necessitating the need for coherent forecasts across these levels. 
Unlike traditional time series forecasting methods like ARIMA, 
ETS, or Prophet, hierarchical time series forecasting does not 
represent a standalone forecasting technique. Instead, it focuses 
on ensuring consistency in forecasts across different levels of a 
hierarchy of time series data using diverse methodologies. This 
study employs hierarchical time series forecasting to derive 
country-level average temperature data and ensure alignment 
between projections at the city level and those at the country 
level.  

 

 
 

Fig. 2. Hierarchical time series 

By maintaining coherence in forecasts within the hierarchical 
structure, this approach enhances the accuracy and reliability of 
temperature predictions, contributing to a more comprehensive 
understanding of temperature trends at varying spatial scales. 
 
2.2.1 Forecasting Methods 
In the context of hierarchical time series forecasting, four 
common methodologies are typically employed: 

1. Bottom-Up Approach: 
In the bottom-up method, forecasts are generated at the lowest 
level of the hierarchy. These forecasts are then aggregated to 
obtain estimates for higher levels within the hierarchy. 

2.  Top-Down Approach: 
The top-down strategy involves forecasting at the highest level 
of the hierarchy first. Subsequently, these forecasts are 
disaggregated to obtain predictions for the lower levels of the 
hierarchy. 

3. Middle-Out Approach: 
The middle-out approach combines elements of both the 
bottom-up and top-down methods, specifically applicable to 
strictly hierarchical time series. Forecasting is directly 
performed at the middle level of the hierarchy. The bottom-up 
method is then utilized to aggregate forecasts for all levels 
above the chosen middle level, while the top-down method is 
applied to forecast the levels below the middle level. 

4. Optimal Reconciliation Approach: 
The optimal reconciliation approach assumes that base 
forecasts for all series at all levels approximately adhere to the 
hierarchical structure. A linear regression model is used to 
reconcile individual forecasts, ensuring coherence across the 
hierarchy. Basic forecasts from all levels are combined by 
solving a set of equations to determine appropriate weights, 
preserving the hierarchical relationships between different 
levels. 
 
Each of these methods has its own characteristics and potential 
biases towards the levels being forecasted. Through testing all 
these approaches, evaluating their performance, and selecting 
the most suitable method based on the specific forecasting 
requirements, we can obtain accurate and reliable forecasts that 
effectively address the issues at hand. 
 
2.2.2 Creating the Hierarchy 
In hierarchical time series forecasting, a key aspect is 
establishing a structured hierarchical representation. A common 
method is to use a dictionary to create a hierarchical tree. Nodes 
are keys in the dictionary, with their children as corresponding 
values. This recursive structure allows for nested levels of 
children. This approach simplifies the organization of 
hierarchical relationships, aiding in accurate predictions across 
different levels of the hierarchy. 
 
2.2.3 Model and Revision Methods 
The model selection and revision method play crucial roles in 
determining forecasting accuracy. In this study, the model 
choice dictates the type of model used for individual time series 
forecasting, while the revision method outlines the approach to 
hierarchical forecasting. The "scikit-hts" package, known for its 
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proficiency in modeling hierarchical time series, was pivotal in 
this research, offering the 'HTSRegressor' class. Various 
models, including Auto ARIMA, SARIMAX, Holt-Winters 
exponential smoothing, and Facebook's Prophet, were 
employed. Additionally, revision techniques such as the 
Bottom-Up (BU) approach, Average Historical Proportions 
(AHP) for top-down forecasting, and the Optimal Combination 
using Ordinary Least Squares (OLS) were utilized. Through a 
comparative analysis of different model and revision method 
combinations, the most effective approach for addressing the 
research problem was identified. 
 
2.2.4 Model Evaluation Using RMSE 
In evaluating the forecasting model, the HTS regressor model 
predicts data from the beginning of the historical dataset, 
eliminating the need for a train-test split. The assessment of 
model performance is conducted using Root Mean Square Error 
(RMSE), a metric that quantifies the differences between actual 
and predicted values. RMSE calculates the square root of the 
mean of the squared differences between observed and 
predicted values. 

𝑅𝑀𝑆𝐸 = &∑ (𝑦(𝑖) − 𝑦(𝚤)/ (!"
#$%

𝑁  

where N is the number of data points, y(i) is the i-th  
measurement, and 𝑦1(i) is its corresponding prediction. 
This metric provides insights into the accuracy and 
effectiveness of the forecasting model, measuring discrepancies 
between true and predicted values for each data point. 
 
By utilizing RMSE as the evaluation metric, the forecasting 
model's performance can be effectively assessed and compared 
across different model and revision method combinations.  
 

 Results and Discussion  
Following the execution of forecasting models, the subsequent 
step involves evaluating and selecting the model that delivers 
the most precise predictions with minimal margin for error. 
Utilizing tools like Auto Arima, SARIMAX, Prophet, and Holt-
Winters, the forecasting process incorporates both bottom-up 
and top-down approaches, alongside optimal combinations and 
reconciliation techniques. Evaluation criteria include Root 
Mean Square Error (RMSE) and an assessment of projected 
data points up to 2050. In this scenario, a train-test split is 
unnecessary as the HTS regressor model forecasts data from the 
historical dataset's inception, utilizing actual and predicted 
historical data from 1894 to 2012 for model assessment via 
RMSE. RMSE, a vital metric in model evaluation, gauges 
deviations from actual values by averaging errors; a RMSE 
value of 0 shows that the model provides an accurate 
representation of the data, so smaller RMSE values indicate 
higher-quality models and more accurate predictions, while 

higher values imply substantial discrepancies between 
predictions and actual data, aiding in feature assessment for 
prediction model improvement.  
 
3.1.   Model Evaluation  
3.1.1 Auto-Arima 

The application of Auto-Arima automatically determines the 
optimal order for an ARIMA model. Through a structured 
process, the Auto-Arima function refines ARIMA parameters, 
initiates differencing tests, and investigates seasonal 
differentials, enhancing model accuracy. Leveraging various 
criteria like the Akaike Information Criterion, the model selects 
the ARIMA configuration that minimizes the criterion value, 
ensuring optimal performance. 
 
The study presents a comprehensive evaluation of the auto 
ARIMA model's performance across different geographical 
scales. RMSE values, illustrated in Table 1, reveal the 
superiority of the bottom-up (BU) revision method, yielding an 
RMSE of 2.75 at the city level. However, discrepancies emerge 
at the national and global levels, indicating challenges in 
matching observed and projected temperatures accurately. 
 

Model RMSE_City RMSE_Country RMSE_Total 
Arima AHP 48.014634 9426529 2396793000 

Arima BU 2.757226 9301457 2350191000 

Arima OLS 441.310239 363.70 1303.2 
Table 1. Auto-Arima RMSE table 

 
Fig. 3 contrasts the observed and projected global temperature 
values using BU, AHP, and OLS revision methods. Notably, 
forecasted global temperatures tend to overshoot observed 
values, indicating a lack of alignment. Similarly, Table 2 
showcases elevated RMSE values at the country level, 
irrespective of the revision method employed. Although OLS 
displays comparatively lower RMSE values at the country 
level, discrepancies persist, suggesting suboptimal model fits. 
In contrast, city-level RMSE values, as depicted in Table 1, 
outshine global and country-level counterparts. The BU and 
AHP methods demonstrate superior predictive accuracy 
compared to OLS, with the BU strategy yielding the most 
favorable results. Fig. 4 visualizes the discrepancy between 
observed and predicted nation-level temperatures, highlighting 
the BU method's superior predictive capabilities. 
 
While the auto ARIMA model excels at city-level temperature 
predictions, challenges persist at broader geographical scales. 
The BU revision method emerges as the most effective strategy 
for city-level forecasts, offering superior accuracy and 
alignment with observed temperature data.
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Fig. 3. Observed vs Predicted plot using Arima - Global temperature 

 

 
Country City RMSE Arima 

AHP 

RMSE Arima 

BU 

RMSE Arima 

OLS 

Bangladesh Dhaka 18.339219 2.205497 632.94280 

Bangladesh Rajshahi 12.824577 2.326885 629.457691 

Brazil Rio De Janeiro 76.859878 1.468905 508.909871 

Brazil São Paulo 76.742661 1.707354 507.232933 

China Chongqing 10.136729 1.836640 260.911193 

China Shanghai 24.028938 2.393814 261.303495 

Congo Bukavu 39.819579 0.555325 553.968422 

Congo Kinshasa 66.662300 1.174492 554.429907 

Egypt Cairo 2.112856 1.529681 488.743064 

Egypt Luxor 1.728384 2.231606 488.403315 

Ethiopia Addis Abeba 32.755887 0.754461 404.929808 

Ethiopia Gondar 31.950737 1.320818 405.276084 

France Lyon 21.538990 3.616053 158.132935 

France Paris 10.762795 3.858453 158.554843 

Germany Berlin 25.351705 4.227415 130.135085 

Germany Hamburg 20.634497 3.066592 125.999137 

India Delhi 5.206420 4.072059 690.703270 

India Thiruvananthapuram 72.346067 0.982712 684.156830 

Indonesia Jakarta 65.691289 0.632009 691.675617 

Indonesia Makasar 63.877411 0.800036 691.668775 

Iran Tabriz 52.837950 3.693021 313.760341 
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Iran Yazd 23.602300 2.199806 317.388443 

Italy Rome 15.127986 2.341251 214.830900 

Italy Venice 19.109275 2.526356 215.403125 

Japan Hiroshima 19.854573 2.238869 255.332325 

Japan Tokyo 28.140729 1.734219 255.452074 

Mexico Guadalajara 19.593213 0.814211 431.035604 

Mexico Mérida 43.047165 1.161973 430.697911 

Nigeria Kano 41.840856 2.793822 727.935988 

Nigeria Lagos 70.458690 0.820838 726.900738 

Pakistan Karachi 10.987886 2.100574 644.556084 

Pakistan Lahore 3.905321 3.780943 640.281816 

Philippines Davao 58.615814 0.645436 713.415456 

Philippines Manila 55.099935 1.273706 711.402487 

Russia Moscow 95.970812 6.913451 141.346383 

Russia Saint Petersburg 67.182898 6.766734 141.980943 

South Africa Cape Town 69.388952 1.000696 298.633797 

Tanzania Dar Es Salaam 89.726630 0.721565 506.479851 

Thailand Bangkok 54.194206 1.285081 709.687792 

Turkey Istanbul 11.824897 2.455631 237.685961 

United Kingdom London 7.501645 2.834723 115.509567 

United Kingdom Oxford 7.501645 2.834723 115.509567 

United States Chicago 38.736061 6.280253 272.637273 

United States New York 50.282877 3.060136 267.500238 

Table 2. Auto-Arima RMSE table of city level temperature 

 
 
3.1.2 SARIMAX 

In this study, an advanced iteration of the ARIMA model, 
SARIMAX (Seasonal Auto-Regressive Integrated Moving 
Average with eXogenous components), was investigated, 
offering a seasonal equivalent model capable of incorporating 
external influences. SARIMAX comprises seven parameters, 
with the initial three mirroring those of ARIMA and the 
subsequent four delineating the seasonal pattern. Additional 
parameters encompass the season's length, seasonal 

differentiation, seasonal moving average, and seasonal 
autoregressive components. Notably, seasonal effects were not 
factored into the analysis, with default p, d, and q orders of 1, 
0, and 0, respectively, employed in SARIMAX modeling. 
 
The evaluation, showcased in Table 3, underscores that city-
level RMSE values outperform national and global averages, 
with the bottom-up approach yielding the most favorable 

outcomes despite a city-level RMSE of 14.52, relatively high 
when compared to the average RMSE. Fig. 4 visually represents 

the disparity between projected and observed global 
temperatures via SARIMAX, revealing significantly elevated 
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predicted values compared to actual readings, elucidating the 
model's struggle to accurately reflect global temperature trends. 
accentuates the divergence between actual and projected 
values, the BU approach stands out for its lower RMSE values, 
indicative of a well-fitted model.  Moreover, Table 4 delineates 
city-level RMSE values, showcasing superior accuracy 
compared to national and global levels. While the OLS revision 
method exhibits higher RMSE actual and projected nation-level 

temperatures, revealing prediction variances among revision 
methods. Despite the BU method's low RMSE, potential 
overfitting concerns are highlighted, suggesting a need for 
further evaluation to mitigate such risks. These findings 
collectively underscore the challenges in accurately capturing 
temperature trends at different geographical scales using 
SARIMAX, emphasizing the importance of method selection 
and model fitting in temperature forecasting analyses. 

 
Model RMSE_City RMSE_Country RMSE_total 

SARIMAX AHP 55.252 8724648.760 2178714837.688 

SARIMAX BU 14.525 8584289.023 2135455268.622 

SARIMAX OLS 408.973 343.689 1236.651 

Table 3. SARIMAX RMSE table 
 
 
 

Fig. 4. Observed vs Predicted plot using SARIMAX - Global temperature
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Country City RMSE 

SARIMAX AHP 

RMSE 

SARIMAX BU 

RMSE 

SARIMAX OLS 

Bangladesh Dhaka 29.795 6.780 616.860 

Bangladesh Rajshahi 26.076 8.142 619.136 

Brazil Rio De Janeiro 82.930 2.110 496.819 

Brazil São Paulo 73.146 3.164 496.952 

China Chongqing 18.346 16.458 242.151 

China Shanghai 29.994 21.970 257.613 

Congo Bukavu 39.228 0.532 541.754 

Congo Kinshasa 67.321 1.200 542.758 

Egypt Cairo 7.157 9.622 475.750 

Egypt Luxor 11.990 13.235 477.299 

Ethiopia Addis Abeba 36.256 0.969 392.718 

Ethiopia Gondar 37.050 1.342 393.384 

France Lyon 27.019 14.713 156.306 

France Paris 15.080 12.314 152.224 

Germany Berlin 31.364 17.399 125.961 

Germany Hamburg 25.460 14.158 123.547 

India Delhi 27.044 16.229 691.006 

India Thiruvananthapuram 79.169 1.255 661.489 

Indonesia Jakarta 68.437 0.597 678.199 

Indonesia Makasar 64.374 0.703 678.395 

Iran Tabriz 59.973 24.657 318.036 

Iran Yazd 35.738 22.655 296.995 

Italy Rome 19.542 14.182 208.573 

Italy Venice 25.093 16.073 209.624 

Japan Hiroshima 22.632 18.369 246.675 

Japan Tokyo 32.265 19.355 249.027 

Mexico Guadalajara 23.451 1.892 415.543 

Mexico Mérida 40.173 1.693 417.866 
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Nigeria Kano 57.757 5.976 721.634 

Nigeria Lagos 73.700 0.914 710.523 

Pakistan Karachi 25.394 8.683 611.101 

Pakistan Lahore 22.100 19.135 628.040 

Philippines Davao 60.302 0.640 697.725 

Philippines Manila 62.342 1.297 698.347 

Russia Moscow 104.659 33.153 136.464 

Russia Saint Petersburg 73.412 25.591 142.462 

South Africa Cape Town 66.280 3.550 291.794 

Tanzania Dar Es Salaam 92.050 1.256 495.053 

Thailand Bangkok 64.675 1.878 694.026 

Turkey Istanbul 13.717 13.970 228.080 

United Kingdom London 10.149 8.955 112.128 

United Kingdom Oxford 10.149 8.955 112.128 

United States Chicago 41.963 23.930 282.889 

United States New York 57.884 25.375 275.941 

Table 4. SARIMAX RMSE table of top 25 countries and cities with highest population 

 

 
3.1.3 Prophet 

In a groundbreaking move, Facebook, now rebranded 
as Meta, unveiled the Facebook Prophet library, a 
cutting-edge tool designed for time series analysis. 
This library revolutionizes the handling of seasonality 
and data stationarity parameters, streamlining the 
process through automated management. The Prophet 
model, based on an additive methodology, excels in 
predicting time series data by fitting non-linear trends 
intertwined with various seasonal patterns occurring 
annually, monthly, daily, and during special events. It 
thrives when dealing with strongly seasonal time series 
and copious amounts of historical data. Our study 
harnessed Facebook's Prophet model in conjunction 
with the Analytic Hierarchy Process (AHP), Bottom-

Up (BU), and Ordinary Least Squares (OLS) revision 
approaches to ensure precise forecasts. Facebook, now 
Meta, introduced the Prophet library for time series 
analysis, automating seasonality and data stationarity 
management. Prophet's additive model predicts time 
series data with nonlinear trends and diverse seasonal 
patterns. Employing Prophet with AHP, BU, and OLS 
methods, we found city-level RMSE values superior to 
country and global levels. The BU method excelled 
with an RMSE of 1.437. Visualizing in Fig. 5, 
predicted global temperatures exceeded actuals, 
affecting RMSE scores. Country-level RMSE values 
were high across revision methods.  
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Model RMSE_City RMSE_Country RMSE_total 

Prophet AHP 50.370 8906183.279 2223985853.046 

Prophet BU 1.437 8899076.068 2223951384.829 

Prophet OLS 407.608 335.552 1270.057 

Table 5.  Prophet RMSE table 
 
 
 

 

Fig. 5. Observed vs Predicted plot using Prophet - Global temperature 

 
 
 
3.1.4 Holt -Winters exponential smoothing 

In our research, we leveraged the Holt-Winters exponential 
smoothing method, pioneered by Charles Holt and Peter 
Winters, to predict temperatures considering both trend and 
seasonality. By default, this method assumes no trends or 
seasonality in the data. Table 6 reveals that city-level RMSE 
values outshine those at the country and global levels, with the 

BU method performing the best at 14.91. Fig. 6 visually 
compares projected global temperatures from the Prophet 
model using different revision methods against actual values, 
highlighting significant discrepancies. Table 7 displays city-
level RMSE values, significantly lower than country and global 
levels, with the BU method showing the best fit despite 
relatively higher RMSE values compared to AHP and OLS 
methods.  

 
Model RMSE_City RMSE_Country RMSE_total 

Holt-Winters AHP 55.795 8908849.551 2224539486.318 

Holt-Winters BU 14.908 8913878.911 2224440677.987 

Holt-Winters OLS 409.068 341.026 1286.728 

Table 6. Holt-Winters RMSE table 
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Fig. 6. Observed vs Predicted plot using Holt-Winters - Global temperature 
 
 
 

 
Country City RMSE Holt 

Winters AHP 

RMSE Holt 

Winters BU 

RMSE Holt 

Winters OLS 

Bangladesh Dhaka 30.809 6.565 617.829 

Bangladesh Rajshahi 26.867 7.954 618.721 

Brazil Rio De Janeiro 85.166 1.595 497.598 

Brazil São Paulo 74.963 2.744 496.283 

China Chongqing 17.845 16.750 253.145 

China Shanghai 29.242 22.494 264.291 

Congo Bukavu 40.548 0.202 542.074 

Congo Kinshasa 69.372 0.803 542.273 

Egypt Cairo 7.188 9.562 476.052 

Egypt Luxor 11.907 13.231 475.055 

Ethiopia Addis Abeba 37.308 0.778 394.650 

Ethiopia Gondar 38.135 1.149 394.959 

France Lyon 26.682 15.182 152.777 

France Paris 14.786 12.579 152.376 

Germany Berlin 30.990 17.998 124.557 

Germany Hamburg 25.136 14.616 124.243 

India Delhi 27.210 16.307 684.220 

India Thiruvananthapuram 81.572 0.800 669.933 

Indonesia Jakarta 70.712 0.156 678.257 

Indonesia Makasar 66.590 0.285 678.380 
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Iran Tabriz 59.432 25.716 310.660 

Iran Yazd 35.043 23.204 299.314 

Italy Rome 19.130 14.451 207.852 

Italy Venice 24.653 16.438 206.637 

Japan Hiroshima 22.010 18.791 248.466 

Japan Tokyo 31.657 19.783 247.307 

Mexico Guadalajara 24.362 1.690 418.511 

Mexico Mérida 41.770 1.282 421.280 

Nigeria Kano 59.458 5.694 717.548 

Nigeria Lagos 76.070 0.456 711.866 

Pakistan Karachi 26.155 8.496 621.525 

Pakistan Lahore 21.832 19.200 627.690 

Philippines Davao 62.373 0.236 698.339 

Philippines Manila 64.407 0.886 698.317 

Russia Moscow 104.513 35.901 137.833 

Russia Saint Petersburg 73.240 27.716 151.050 

South Africa Cape Town 67.758 3.295 293.927 

Tanzania Dar Es Salaam 94.683 0.751 496.042 

Thailand Bangkok 66.788 1.467 694.812 

Turkey Istanbul 13.337 14.265 232.173 

United Kingdom London 9.927 9.124 111.074 

United Kingdom Oxford 9.927 9.124 111.074 

United States Chicago 41.405 24.912 274.932 

United States New York 57.298 26.317 266.232 

Table 7. Holt Winters RMSE table of top 25 countries and cities with highest population 

 
 
 
3.2.   Model Comparison 
Evaluating the model's performance solely based on Root Mean 
Square Error (RMSE) assessments is deemed inadequate for 
drawing conclusive insights. A comprehensive analysis of the 
forecasted outcomes is imperative. Our predictions span from 
monthly temperatures in 2013 to 2050, necessitating a thorough 
examination of these projections. Visual representations of 
forecasted temperatures are depicted separately for country, 
city, and global levels. Additionally, we scrutinized the 

forecasted global temperature and country-level outcomes by 
aggregating city-level forecast results. 
 
Our study further delves into aggregating city-level forecast 
outputs from Arima, SARIMAX, Prophet, and Holt-Winters 
exponential smoothing models to the global level, contrasting 
them with actual national temperature data. The consolidated 
city-



 

333 
 

International Journal of Data Science and Advanced Analytics (ISSN: 2563-4429) 
Vol: 06 Issue: 06 

level predictions from all three models were 
extrapolated to the global level to compute global 
RMSE values, detailed in Table 8. Comparative 
analysis against RMSE values in Tables 1, 3, 5, and 6 
reveals significantly lower RMSE values for the AHP, 
BU, and OLS methodologies. Line graphs depicting the 
observed and forecasted global-level data, derived 
from combined city-level forecasts, are presented in 
Fig. 7. Notably, the OLS approach in the Auto Arima 
model projected lower temperature values compared to 
actual readings, while AHP and BU forecasts exhibited 
a coherent alignment with measured values. The 
SARIMAX model's forecasts from the three revision 
methods indicated consistent trends with almost 
identical temperature readings. In the Prophet model, 
forecast outcomes smoothly followed the fluctuations 
in measured temperature data. The Holt-Winters 
exponential smoothing model accurately accounted for 
original temperature variations, mitigating overfitting. 

Fig. 8 illustrates the aggregated city-level forecasts 
from all three models to the global level. Noteworthy 
trends include the OLS technique's sharp decline in 
2013 and subsequent stability in the Auto Arima 
model. The efficacy of the AHP and BU methods in 
Auto Arima stems from their ability to track the 
average temperature trend. In contrast, declining trends 
projected by the AHP, BU, and OLS methodologies in 
the SARIMAX model suggest potential forecast 
inaccuracies. In the Prophet model, unjustifiable 
fluctuations in AHP and BU forecasts indicate 
unreliability, while the OLS forecast predicts a steady 
decline post-2012. Similarly, Holt-Winters' 
exponential smoothing model forecasts a sharp 
temperature decline post-2012, remaining stable until 
2050. Overall, the AHP and BU methods in Auto 
Arima offer more reliable global temperature forecasts 
based on these observations. 

 
 

 
Model RMSE 

Arima AHP 1.165387 

Arima BU 0.252194 

Arima OLS 349.264630 

Holt Winters AHP 0.200754 

Holt Winters BU 0.001348 

Holt Winters OLS 345.451053 

Prophet AHP 0.215393 

Prophet BU 0.019303 

Prophet OLS 345.450490 

SARIMAX AHP 0.068235 

SARIMAX BU 0.078992 

SARIMAX OLS 345.342533 

Table 8. RMSE - Global temperature, aggregating city level results 
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Fig. 7. Observed vs Predicted plot using all model – Global temperature, aggregated from City level results 
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Fig. 8. Global temperature forecast, aggregated from City level results 
 
 
 
3.3.   Discussion on Forecasted Results 
This section presents the outcomes of experiments 
conducted to predict monthly average temperatures 
through hierarchical time series forecasting. An 
evaluation of the results from Arima, SARIMAX, 
Prophet, and Holt-Winters exponential smoothing 
models, with OLS, BU, and AHP as revision methods, 
leads to the following conclusions. 

 
3.1.1 City Level Forecast  
The Auto Arima with BU approach demonstrates 
superior city-level forecasting compared to other 
models. Fig. 9 illustrates the forecasted values align 
with the average temperature trend, enhancing its 
performance. Conversely, some models exhibit erratic 
trends with high variations, as depicted in Table 9, 
showcasing the efficacy of the Auto Arima with BU 
approach through low RMSE values. 
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Fig. 9. City level temperature forecast using Arima 

 
 
In Table 10, temperature predictions for select cities 
using the Auto Arima BU technique are presented, 
showcasing successful city-level forecasting. Notably, 
temperatures are projected to increase by 2.90% in 
London, 2.21% in Vancouver, and 0.57% in Dongli 

from 2012 to the predicted values for 2050, indicating 
a notable rise in land surface temperatures. 
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Model RMSE – City Level 

Arima AHP 48.111 

Arima BU 2.661 

Arima OLS 422.523 

Holt Winters AHP 55.795 

Holt Winters BU 14.908 

Holt Winters OLS 409.068 

Prophet AHP 50.370 

Prophet BU 1.437 

Prophet OLS 407.608 

SARIMAX AHP 55.252 

SARIMAX BU 14.525 

SARIMAX OLS 408.973 

Table 9. RMSE Table – City level 
 
 
 

City 2012 2020 2025 2030 2035 2040 2045 2050 

London, United 

Kingdom 

9.99 10.281 10.282 10.283 10.284 10.284 10.285 10.285 

Balakovo, Russia 6.40 5.235 5.245 5.254 5.261 5.266 5.270 5.273 

Vancouver, United 

States 

10.25 10.474 10.475 10.476 10.477 10.478 10.479 10.480 

Phagwara, India 24.3 24.294 24.306 24.303 24.301 24.301 24.300 24.300 

Dongli, China 24.5 24.621 24.630 24.636 24.639 24.640 24.641 24.642 

 
Table 10. City level temperature forecast results (in °C) Auto Arima, BU approach 

 
 
 
 
 
  
3.1.2 Country Level Forecast 
Analysis results reveals that all models, including Auto 
Arima, SARIMAX, Prophet, and Holt-Winters 
exponential smoothing, produce unrealistic 
temperature values at the country level. By aggregating 
city-level forecasts, we obtained more accurate 

national-level predictions, with the Auto Arima BU 
approach yielding the best results. Fig. 10 highlights 
the model's ability to maintain average temperatures, 
contrasting with other models displaying inexplicable 
trends and high variances. Table 11 showcases low 
RMSE values for the country-level model, 
emphasizing the suitability of the Auto Arima with BU 
method. 
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Fig. 10. Observed vs Predicted plot using Arima – Country level temperature, aggregated from City level results 

 

 
Model RMSE – Country 

Level 

Arima AHP 3.121 
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Arima BU 0.186 

Arima OLS 407.270 

Holt Winters AHP 3.241 

Holt Winters BU 0.016 

Holt Winters OLS 387.928 

Prophet AHP 3.248 

Prophet BU 0.127 

Prophet OLS 387.932 

SARIMAX AHP 2.856 

SARIMAX BU 0.141 

SARIMAX OLS 387.767 

Table 11. RMSE Table – Country level, aggregating city level results 
 

 
Country 2012 2020 2025 2030 2035 2040 2045 2050 

United Kingdom 15.88 9.986 9.985 9.982 9.977 9.972 9.966 9.960 

Russia 4.5 4.031 4.032 4.032 4.032 4.032 4.031 4.031 

United States 15.8 15.028 15.033 15.037 15.039 15.041 15.043 15.045 

India 26.19 26.048 26.050 26.053 26.057 26.060 26.064 26.068 

China 13.06 13.380 13.382 13.384 13.385 13.386 13.387 13.387 

Table 12. Country level forecast results (in °C) Auto Arima-BU approach, aggregating city level results 

 
 
Table 12 displays predicted temperature values for 
selected nations, derived from city-level results using 
the Auto Arima BU approach, affirming successful 
country-level forecasting. Notably, China's 
temperature is projected to increase by 2.47% from 
2012 to the forecasted values for 2050, warranting 
attention. 
 
  

3.1.3 Global Temperature Forecast 
Fig. 11 indicates that models, including Auto Arima, 
SARIMAX, Prophet, and Holt-Winters exponential 
smoothing, generate extreme temperature forecasts at 
the global level. However, successful predictions are 
achieved by combining city-level results, with the Auto 
Arima BU and AHP techniques outperforming other 
models. 
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Fig. 11. Global temperature forecast using Arima, SARIMAX, Prophet and Holt Winters 

 
 
Fig. 8 demonstrates how the Auto Arima BU and AHP methods 
maintain average temperatures effectively, contrasting with 
models showing erratic trends. Table 13 displays low RMSE 

values for the global model, indicating the efficacy of the Auto 
Arima with BU method. 

 
Model RMSE – Country Level 

Arima AHP 0.408 

Arima BU 0.050 

Arima OLS 366.394 

Holt Winters AHP 0.201 

Holt Winters BU 0.001 

Holt Winters OLS 345.451 

Prophet AHP 0.215 

Prophet BU 0.019 

Prophet OLS 345.450 

SARIMAX AHP 0.068 
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SARIMAX BU 0.079 

SARIMAX OLS 345.343 

Table 13. RMSE Table – Global level, aggregating city level results 
 
 
 

 2012 2020 2025 2030 2035 2040 2045 2050 

Temperature 18.57 18.597 18.598 18.600 18.601 18.602 18.603 18.604 

Table 14. Global level forecast results (in °C) Auto Arima, AHP approach 
 
 
 

 2012 2020 2025 2030 2035 2040 2045 2050 

Temperature 18.57 18.606 18.618 18.628 18.639 18.648 18.658 18.668 

Table 15.  Global level forecast results (in °C) Auto Arima, BU approach 
 
 
Tables 14 and 15 present predicted global temperature values 
obtained by aggregating city-level results using the Auto Arima 
AHP and BU approaches, respectively. These findings 
underscore the accuracy of the Auto Arima BU method in 
forecasting global temperatures, with a projected 0.52% 
increase from 2012 to 2050. 
 
 
 

 Conclusions  
In this research, an extensive analysis was conducted on 
monthly average temperature data spanning from 1894 to 2012 
across 159 nations, forecasting temperatures up to 2050 for 
prominent cities. Various models including Auto Arima, 
SARIMAX, Prophet, and Holt Winters exponential smoothing 
with BU, AHP, and OLS revision techniques were evaluated, 
with a robust model identified that surpassed competitors in 
forecast accuracy. The study emphasized the critical role of 
land surface temperature in the Earth's climate system, 
highlighting its influence on vital processes like water and 
energy transfer and vegetation growth. By employing 
hierarchical time series analysis, the research aimed to 
understand and forecast land surface temperatures in major 
cities globally, revealing a notable temperature rise trend. The 
findings underscored the significance of hierarchical 

forecasting to achieve reliable predictions across different 
levels of hierarchy, with the Auto Arima model utilizing the BU 
method demonstrating superior performance at the city level. 
The study highlighted a 0.52% global temperature increase by 
2050, emphasizing the urgent need for proactive measures in 
light of escalating temperatures. 
 
This research contributes substantially to the understanding of 
Earth's warming trends and the impacts of human-induced 
greenhouse gas emissions on climate and ecosystems. By 
exploring hierarchical time series forecasting models such as 
Auto Arima, SARIMAX, Prophet, and Holt Winters 
exponential smoothing, and adopting the Auto Arima model 
with BU revision as the preferred approach, the study provides 
valuable insights into forecasting methodologies.   
Future work therefore can include refining models through 
techniques like PHA, FP, WLSS, and WLSV revisions, as well 
as adjusting Auto Arima and SARIMAX parameters for 
enhanced precision. The study's comprehensive approach and 
utilization of hierarchical time series forecasting techniques 
signify its relevance in addressing complex business challenges 
requiring accurate time series forecasting at various hierarchical 
levels, thus offering valuable contributions to the field. 
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