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Abstract—Assessment of Default risk of borrowers is important for lending institutions as it directly affects profits and losses of the firm 
and guides in compensating the risk by taking appropriate majors for loans having higher probability of default. Predicting probability of 
default using statistical and machine learning models has been a popular research topic in data science community. While different types of 
classification models have been proposed historically, there is scope to apply probabilistic inference to the mortgage default analysis to 
support decision making. Probabilistic Graphical Model (PGM) are a powerful framework for compactly encoding probability distributions 
over complex multivariate domains using graphical representations. Due to the high interpretability and inherent support for probabilistic 
inference, the PGM models have widely been used under various domains such as medical diagnosis, text, audio, video processing. However, 
the causal and evidential reasoning capabilities of the PGM framework are not fully applied to the domain of credit scoring and for inferring 
probability of default, more so for large-scale real-life datasets. This study successfully built Bayesian Network as a PGM on the real-life 
mortgage loan dataset from Fannie Mae, USA to demonstrate inference and querying capabilities of the graphical models to render useful 
insights for decision makers in the lending institutions. As the percent of defaults has fallen in recent past, the dataset is highly skewed. This 
study used under-sampling and over sampling methods to get more balanced representation of the dataset with respect to Last Status of the 
loan as a multinomial target variable. Data-driven approach was used for the structure learning of PGM, to get important insights about 
relationship of variables in the Train dataset. Further, a custom Bayesian Network was built using hybrid approach by manually specifying 
the structure and using parameter learning algorithms for fitting parameters. The custom-built Bayesian Network was used to get 
probability of default on the mortgage loan Test dataset to enable comparison of the PGM with Logistic Regression as a benchmark 
classification algorithm. The custom- built PAG gave better predictive performance on the imbalanced Test dataset as compared with 
Logistic Regression. Usage of the Last Status variable allowed to capture interdependencies between variables at more granular level leading 
to the improved performance of the model. The custom-built Bayesian Network was utilized to demonstrate causal and evidential querying 
capabilities of the PGM framework on the mortgage loan dataset, exploring local independencies in the network. Thus, PGM with its 
powerful probabilistic inference framework was proved to be a practically useful tool for the mortgage default analysis. 
Keywords—Default Risk; Machine Learning; Probability; Probabilistic Graphical Model; Classification
 

 Introduction  
Predicting mortgage loan is important to the financial sector 
globally. Specifically in the US, mortgage industry is a major 
part of the financial sector [1]. In the US, lenders are required 
to follow accurate and strict controls for approval of mortgages. 
In this respect, predicting default is crucial where default is the 
probability of a borrower repaying the loan taken [2].  
As such, lending institutions are expected to assess credit risk 
for loan applications where assessing risks informs about 
profits or losses of a credit firm [3]. If a probability of default 
is above a certain threshold, then the lender rejects the loan 
application and chargers higher interest rate to compensate for 
potential future losses [4]. 
Machine learning algorithms (MLAs) have been utilized for 
predicting probability of default predictions [5-7]. Predicting 
default has always been considered as a classification problem 
and clustering or statistical algorithms have been used [8-10]. 
Common classifier algorithms used in such predictions were 
logistic regression (LR) and support vector machines where 
these two algorithms are considered benchmarks for predicting 
probability of default [8-10].  
More recently, deep learning algorithms (DLAs) have been 
deployed for predicting default yet their use have not been 
popular due to issues linked to their interpretability [11-13].  
MLAs applied to default predictions included linear 
discriminant analysis (LDA), LR, naïve bayes, K-nearest 
neighbour, decision trees, random forests (RF), boosting, 
bagging, support vector machines (SVM), neural networks 

(NN), restricted Boltzmann machines, deep belief neural 
networks [14]. 
LDA is a dimensionality reduction technique that has been 
historically applied for supervised classification problem, 
including credit scoring. LDA assumes normal distribution of 
each feature in the dataset. However, this assumption may not 
always hold well in practice [15]. In non-linear cases, SVM has 
been commonly used for credit scoring, and risk assessment of 
loan datasets [16-18]. SVM showed high accuracy for 
predicting credit scoring when combined with K-mean 
clustering [19]. In another study, adaptive learning boost 
(AdaBoost) surpassed other MLAs (e.g. LR, RF) in predictions 
[20]. 
A limitation of MLAs is the requirement of large volumes of 
data for training. Moreover, MLAs and DLAs require values for 
all feature variables. Most of the developed models in the 
literature were made with synthetic data and very few studies 
were applied to real-life datasets [13]. 
In case of limited size datasets, statistical models offer an 
accurate alternative to ML-based classification models. Hence 
PGM can work on small datasets because it is a generative 
model [21]. In particular, probabilistic graphical model (PGM) 
is founded around Bayes’ theorem and has outperformed 
Bayes’ theorem in classification [22,23]. PGM has been used in 
many applications related to medical diagnosis [23-26]; speech 
recognition [27,28] and genetics [29,30]. The popularity of 
PGM in such applications is related to its opacity and 
interpretability. Graph-based PGM allow understand complex 
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multivariate systems that have complex amount of 
interpretability. PGM also enables reasoning the probability of 
a query variable given observations of more than one evidence 
variables.  
Therefore, the present research proposes the application of 
PGM for predicting default comparing it to LR. The study 
applies PGM to dataset of single-family mortgage loans from 
Fannie Mae (USA) that was accessed from Kaggle [30]. 
 

 Materials and Methods  
 

 Dataset 

 
The dataset used was obtained from Kaggle open access 
platform and was the Fannie Mae loan acquisition and 
performance dataset on a subset of its Single-Family mortgage 
loans acquired from 2009 till last quarter [30]. The loan 
population contains two datasets, a primary dataset, and the 
HARP dataset. The original primary dataset containing loan 
acquisition and performance data from 2000 till 2012 was 
released by Fannie Mae in year 2012. For every quarter, Fannie 
Mae provides acquisition and performance data as of last 
quarter for all loans acquired since 2009 till date. The latest 
available update for the primary dataset is from 2022 Q2. The 
study will use the loans originated through years 2018 to 2022 
for the study. The HARP dataset contains data of loans that 
were acquired by Fannie Mae between year 2000 to 2015 and 
refinanced via the HARP program. As the HARP program was 
not active during the time window under scope of this study, the 
HARP dataset will be excluded from scope. 
 

 Data pre-processing 
Data pre-processing commenced with univariate analysis in 
order to understand the distribution of variables in the dataset. 
The statistical summary dataset showed 74 columns, of which 
13columns were of type integer, 35 columns are of type float 
and 26 columns are of type object. Variables that were not 
related to the scope of the study were excluded from the dataset.  
 

 Feature engineering 
The statistical summary dataset has multiple variables related 
to credit events and impact\loss caused by the credit events. The 
field ‘LAST_STAT’ gives last status of the loan. Loans for 
which last status falls in either of below values are considered 
as defaulted. Table 1 gives list of status values that decide if 
loan is defaulted. 
 

Table 1. Criteria of Loan Default. 

Last Status code Last Status Description 
F Deed-in-Lieu; REO Disposition 
S Short sale 
T  Third party sale 
N Notes sale 
9  270 Day Delinquency / 270+ Day Delinquency 

8 240 Day Delinquency 
7 210 Day Delinquency 
6 180 Day Delinquency 

 
In addition, a new Boolean variable named ‘Default’ was added 
for which value will be set as True when Last Status of the loan 
matches any of values from Table 1. Both ‘Default’ and ‘Last 
Status’ variables could be considered as Target variables. In 
case of PGM, both the target variables could be included as 
nodes of Bayesian Network. For LR, ‘Default’ will be 
considered as the target variable. 
 
Date fields such as Origination Date, Maturity Date, Zero 
Balance Effective Date needed to be discretised in the form of 
number of quarters passed from an appropriate date taken as a 
reference date. E.g. for the period covering years 2018 to 2021, 
if ‘1st January 2018’ was considered as the reference date, then 
the date variables would be encoded as quarters with range 1 to 
16. Fields such as State code, Zip code would be mapped to 
regions in the USA and used as a categorical variable. Other 
Feature variables would be created as required during the 
implementation. 
 

 Train and test variable 
Splitting the primary dataset into train and test sets, after initial 
pre-processing steps were completed. The Train Test split needs 
to be conducted prior to re-balancing the dataset. Splitting 
dataset was not a necessity for PGMs, however it was required 
to evaluate prediction performance with respect to the LR 
classifier model. 
 

 Addressing class imbalance 
Class imbalance was addressed in the dataset where the dataset 
was highly skewed. Hence, the percentage of default loan was 
below 1% of the total loans. In this respect, class rebalance was 
applied using under-sampling of the majority class and 
synthetic samples generation (SMOTE) for the minority class. 
The study proposed including Last Status variable in PGM, to 
allow querying probability of a loan entering any of the status 
values. Hence, it was crucial to consider Last Status as the target 
variable while addressing class re-balance. As Last Status 
variable contained more granular information that what was 
contained in the Default variable, it offered best choice as a 
Target variable for re-sampling. This meant under-sampling 
and SMOTE would need to be performed for considering Last 
Status as the target variable.  
Another consideration for re-sampling is that the dataset 
contained both integer and categorical variables. Hence, under-
sampling and over sampling tools would be elected such that 
they support multi-class target variables as well as categorical 
random variables. 
 

 Exploratory data analysis 
Exploratory data analysis was conducted on the resampled 
dataset to identify distribution with respect to default and non-
default loans, visible patterns in the data and correlation 
between variables. 
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 Data preparation for PGM and LR 

Data preparation for PGM and LR was made by enriching the 
re-sampled train dataset by deriving calculated variables e.g. 
default that were needed for modelling, transformation of 
categorical variables into numeric variables. 
PGM supported building Bayesian Networks on both discrete 
and hybrid (discrete + continuous) data. Hence, for PGM, 
numeric variables would be retained as-is in train dataset. Also, 
categorical counterparts for those numeric variables would also 
be included in the dataset. The study created discrete Bayesian 
Networks by including all variables as a categorical variable. In 
parallel, study attempted to get mixed Bayesian Networks by 
using combination of discrete and continuous variables.  
In case of Logistic Regression, one hot encoding will be done 
for categorical variables. Also, feature transform and scaling 
were applied for numeric variables in the LR train dataset. 
 

 Network structure and parameter learning 
Learning of Bayesian Network was done as a two-step process, 
that included structure learning followed by parameter learning. 
A score-based structure learning algorithms such as Hill Climb 
Search, Tabu was applied on the Train dataset using scoring 
functions such as BDe to get DAGs representing the Train 
dataset. In parallel, a constraint-based structure learning 
algorithms such as PC, Growth Shrink was applied to get DAGs 
for the dataset. Then calculation of DAGs scores was learned 
by the structure learning algorithms and evaluate the 
performance of the algorithms. Then the local probability 
distribution was calculated for the DAGs by fitting them on the 
dataset using parameter learning algorithms viz. Maximum 
Likelihood Estimates, Bayesian Posterior Estimation. Then 
queries were run on the fitted model for each DAG, to get 
probabilities of commonly known domain knowledge, to verify 
if the network is able to give practically relevant results. 
This was followed by analysis of the structures (i.e., nodes and 
edge) learned by both approaches in the context of domain 
knowledge and understanding common patterns or visible 
dependencies to decide upon the edges and directed 
relationships to be selected for analysis. 
Then a custom DAG was built using the selected nodes and 
directed relationships between them. The process was be 
carried out iteratively, by selecting just a few nodes / edges at 
the start and adding more nodes / edges based on evaluation of 
the custom DAG. Then local probability distribution was 
estimated using Maximum Likelihood Estimator and Bayesian 
Parameter Estimation.  
 

 Plot DAGs for Bayesian Network and explore CPTs 
Plot the relationships learned by the Bayesian Network in the 
form of the DAGs, to explore the insights rendered by the 
model. Identify variables having major influence on the 
probability of default. An example of a DAG for the Bayesian 
Network structure using few variables is depicted in Figure 1.  
 

 
Figure 1. Sample Bayesian Network for the dataset. 
 
The variables represented in circles are called nodes of the 
network and the arrows connecting nodes are called the edges. 
FICO Score is the credit score used by Fannie Mae. It will 
possibly have high influence on the loan default. Hence there is 
a direct relationship from FICO score to defaulted loan. When 
Debt to Income ratio of a borrower is on higher side, there is a 
high possibility that the same will be reflected in the FICO 
score. Also, the original loan amount approved by the lender 
has a positive relation with the FICO score. If the higher amount 
was approved for the loan, there is a possibility that Loan to 
Value ratio was higher for the loan. This will also have 
influence on the loan default. On other hand, if the borrower is 
a first-time buyer, it will direct the purpose of the loan. This can 
also influence the probability of default.  
To understand the Conditional Probability Table, let’s consider 
the distribution between FICO score and Loan Default status. 
To demonstrate the probability distribution for a discrete 
variable, consider that the FICO scores will be discretised as 
presented in Table 2 based on the range of values. 

Table 2. FICO score level. 

FICO score ranges FICO score levels 
300 – 579 Poor 
580 - 669 Fair 
670 – 739 Good 
740 – 799 Very good 
800 – 850 Exceptional 

 
Table 2 shows that the FICO Score variable will take five levels, 
i.e. Poor, Fair, Good, Very Good, Excellent. The Loan Default 
Status will take two levels i.e., 0 and 1, wherein 0 means no-
default and 1 means default. The conditional probability 
distribution between these two variables will take a form of a 
table as presented in Table 3. 
 

Table 3. Sample CPT. 

Loan default status Loan default status 
0 1 

Poor 0.2 0.8 

Fair 0.25 0.75 
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Good 0.45 0.55 

Very good 0.65 0.35 

Exceptional 0.2 0.2 

 
Table 3 gives probability of default for each possible level of 
the FICO score. Such CPT tables will be learned by the 
Bayesian Network for every discrete node in the network, for 
all possible combination of values for its parents. 
 

 Query probability default on the Bayesian network  
Infer probability of default for random samples in the PGM 
Train dataset using the causal reasoning capabilities of the 
model. The inference computations will be supported by the 
network based on the Conditional Probability Tables obtained 
as part of network structure learning and inference algorithms 
such as variable elimination. 
 

 Perform evidential inference on the Bayesian network  
Explore evidential reasoning capabilities of the Bayesian 
Network model on the PGM Train dataset. For a loan default 
case, queries can be made to get probability of a certain 
influencing variable following under certain range.  Various 
patterns of queries will be performed on the network to 
understand interdependencies of variables and understand their 
significance in the loan default scenarios. 
 

 Build logistic regression classifier 
Build LR based classifier model on the train dataset while 
performing feature selection using Recursive Feature 
Elimination and Variable Inflation Factor (VIF). Predict 
probability of default on the train dataset. Identify optimal cut 
off point of probability by plotting sensitivity, specificity and 
accuracy against different values of probabilities. Evaluate the 
performance of the Logistic Regression on the Test dataset 
using metrics such as Accuracy and Confusion Metrics. 
 

 Compare PGM with LR classifier 
As PGM and LR come from different families of machine 
learning models, direct comparison of PGM with LR is not 
possible. Hence, a custom approach needs to be taken to enable 
comparison of PGM with LR, as detailed out below. 
LR falls under category of models called as Discriminative 
models, which supports predicting class on unseen data. The 
model is built on train dataset. Probability of default is 
calculated on the test dataset and the model’s performance is 
evaluated by measuring the difference between the actual and 
predicted values. 
PGM is part of category of models called Generative models, 
for which the primary use case is to infer probabilities, find 
hidden patterns from underlying distribution of data and 
support probabilistic inference. When PGM structure is learnt 
on the train dataset, it captures the discrete levels for each 
variable based on data distribution. Parameters of the network 
are again fitted based on underlying data distribution. Hence 
given PGM model works only for the dataset on which the 
structure learning and parameter learning was performed. It 
cannot be directedly extended to predict probabilities on the test 

dataset. To evaluate performance of PGM with respect to 
benchmark algorithms, this study will re-build PGM on the Test 
dataset, using the same DAG that was identified to be best 
fitting for the train dataset. To support this, it will be assumed 
that the Train and Test datasets have similar probability 
distribution as they are originally drawn from the same 
population. 
Given below are steps for this process: 
▪ Build Bayesian Network on Test dataset using the DAG that 
was identified to be best fitting on train dataset. 
▪ Re-perform parameter learning for this model on the Test 
dataset. This process captures the parameters of local 
distribution that are best fitted to test dataset. 
▪ Perform queries to get probability and predicted values of Last 
Status for all loan applications in the PGM Test dataset. Get 
predicted value for the Default variable, using value of 
predicted Last Status. This gives actual and predicted values for 
the Default variable in binary format. 
▪ As these values are binary, standard evaluation metrics can be 
applied to measure distance between actual and predicted 
values for PGM Test dataset. Examples of such metrics are Log 
Loss, Confusion Matrix including F1 Score 
▪ Calculate the Log Loss and Confusion Matrix for the Logistic 
Regression on Test dataset. 
▪ Compare values of metrics obtained with the PGM model and 
LR model on the Test dataset to document the findings. 
 

 Results 
 

3.1.  Evaluation of sampling method 
Initially, oversampling was performed on the sample of primary 
dataset using SMOTE-NC algorithm to confirm that the 
approach works to get synthetic samples for minority classes of 
the multinominal Last Status variable, for dataset that includes 
both numeric and categorical variables. The primary statistical 
summary dataset had size of 14.4 million rows and 74 columns. 
Oversampling of this dataset would have increased the size of 
dataset even further posing challenge with respect to 
availability of hardware and speed of execution. Hence, the 
implementation of under-sampling was very important. 
After pre-processing the primary dataset, Train – Test split was 
performed so as to proceed with re-sampling the Train dataset. 
To start with, under-sampling was performed using ‘ROSE 
package, to balance the majority classes C and P, with respect 
to other minority classes. Table 4 shows distribution of classes 
in primary dataset and in under-sampled dataset. Count of the 
majority class datapoints C and P are largely reduced in the 
under-sampled dataset, as seen from the rows highlighted in 
green. On other hand, counts of all other minority classes has 
remained same. 
 

Table 4. Results of under-sampling. 

Target class Count in Primary 
dataset 

Count in under-sampled 
dataset 

C 7630421 164974 

P 3117257 57959 
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1 42041 42041 

9 16094 16094 

R 10237 10237 

2 8429 8429 

3 4477 4477 

4 3256 3256 

5 3181 3181 

6 2567 2567 

7 1979 1979 

8 1758 1758 

L 1580 1580 

F 670 670 

T 465 465 

S 263 263 

N 70 70 

 
Thus, under-sampling helped to bring drastic reduction in 
datapoints of majority classes while not reducing datapoints of 
minority classes as well as keeping their percentage distribution 
intact. The under-sampled dataset was further processed and 
given as input to SMOTE-NC algorithm. An oversampling 
strategy was specified for the SMOTE-NC algorithm that 
included expected counts for each class in the re-sampled 
dataset. 
Table 5 shows results of the SMOTE-NC algorithm. The 
approach helped to increase datapoints corresponding to 
minority classes, while keeping overall distribution of minority 
classes intact. Values of Last Status variable were encoded 
while giving as input to the SMOTE- NC algorithm. Table 5 
specifies encoded values for the Last status variables. With this 
encoding, a loan is considered as defaulted when Last Status 
falls in 5, 6, 7, 8, 12, 12, 15 or 16. 

Table 5. Results of SMOTE oversampling. 

Target 
class 

Count in under-
sampled 
dataset 

Encoded target 
class 

Count in over-
sampled dataset 

C 164974 9 164974 

P 57959 13 57959 

1 42041 0 42041 

9 16094 8 52000 

R 10237 14 33487 

2 8429 1 27572 

3 4477 2 14645 

4 3256 3 10650 

5 3181 4 10405 

6 2567 5 8397 

7 1979 6 6473 

8 1758 7 5750 

L 1580 11 5168 

F 670 10 2191 

T 465 16 1521 

S 263 15 860 

N 70 12 228 

 
Thus, over-sampling with SMOTE helped increasing 
datapoints of minority classes, while keeping percentage 
distribution of minority classes intact. Table 6 gives sizes of 
various datasets generated in the process of getting re-sampled 
train dataset, along with distribution of default and non-default 
loans for those datasets. 
 

Table 6. Sizes of datasets. 

 Primary 
dataset 

Train 
dataset 

Under-
sampled 
train 
dataset 

Balanced 
train 
dataset 

Test 
dataset 

Total 
datapoints 

14459660 10844745 320000 444321 3614915 

Non-
defaults 

14427811 10820879 296134 366901 36006932 

Default 31849 23866 23866 77420 7983 
Non-
default 
(%) 

99.77 899.77 92.54 82.57 99.77 

Default 
(%) 

0.22 0.22 7.54 17.42 0.22 

 
Notice that process of under-sampling did not reduce the count 
of minority datapoints. On other hand, datapoints of majority 
classes were increased in the balanced Train dataset, with 
respect to the under-sampled Train dataset. Percentage of 
minority class was extremely low i.e. 0.22 in the primary 
dataset, which also reflects in the percentage distribution of 
Train and Test dataset. 
In the under-sampled Train dataset, this percentage was 
increased to 7.45. With SMOTE over sampling, the percentage 
of Default class was further increased from 7.45 to 17.42. 
Alternate settings were tried to increase percentage of minority 
classes even further. This necessitated that more datapoints of 
classes P and 1 be included in the target dataset during under-
sampling, so as to keep distribution of all minority classes 
intact. This resulted in higher size of the Train dataset giving 
out of memory issues with the available hardware. 
 

3.2. Results of structure learning 
To learn DAG from the balanced train dataset, score-based and 
constraint-based algorithms were applied, initially on hybrid 
data that included discrete and numeric variables. Some 
challenges and limitations were encountered in applying the 
Bnlearn package to hybrid data as detailed out in sections 
below. Hence, final DAG was prepared on the dataset that had 
all variables converted into their discrete counterparts.  
 

3.3. Parameter learning on train dataset 
Maximum Likelihood estimation and Bayesian Posterior 
Estimates algorithms were used to fit DAGs on the balanced 
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dataset. Predict method offered by bnlearn package was used to 
predict value of Last Status on the Train dataset, using the fitted 
networks. The Predict method ignores values of the target 
variable from given dataset and returns a new vector for the 
target variable, based on probability distribution of the fitted 
network. 
The prediction was done for all discrete DAGs achieved with 
structure learning and manual inputs. As actual and predicted 
values were made available by the Predict method, it was 
possible to calculate metrics pertaining to information gain, 
using the actual and predicted values. Accuracy, Confusion 
Metrics and Log-Loss metrics were calculated for the networks 
fitted using both MLE and Bayesian Posterior Estimates 
algorithms. Table 7 shows the results of the parameter learning 
process. It is evident from the results that both parameter 
learning algorithms yielded similar metrics for given algorithm. 
For example, for a discrete DAG obtained with Hill Climb 
algorithm, the metrics achieved using MLE and Bayesian 
Posterior Estimates algorithm were exactly same. Thus, 
accuracy of both parameter learning algorithms was found to be 
same. While reviewing performance of the parameter learning 
algorithms, Maximum Likelihood estimation was found to be 
very slow compared to Bayesian Posterior Estimates. 
Behaviour of Maximum Likelihood estimation was unstable, 
leading to out of memory exceptions in some scenarios. 
Bayesian Posterior Estimates was identified to be more efficient 
and stable algorithm, Hence, Bayesian Posterior Estimates 
algorithm was used for further evaluation of the Bayesian 
Networks on Test dataset. 
 

Table 7. Performance of PGM on the train dataset. 

 Parame
ter 
learnin
g 
algorith
m 

Log 
loss 

Accurac
y (%) 

Precisio
n (%) 

Recal
l (%) 

Specifi
city 
(%) 

F1-
score 
(%) 

HC MLE 8.44 75.54 33.94 42.71 82.46 37.83 

HC Bayes 8.44 75.54 33.94 42.71 82.46 37.83 

Tabu MLE 6.64 80.75 39.78 20.39 93.48 26.96 

Tabu Bayes 6.64 80.75 39.78 20.39 93.48 26.96 

Inter- 
IAMB 

MLE 1.45 95.78 81.4 98.25 95.26 89.03 

Inter- 
IAMB 

Bayes 1.45 95.78 81.4 98.25 95.26 89.03 

Custo
m 
built 
DAG 

MLE 0.93 97.3 88.34 97.36 97.29 92.63 

Custo
m 
built 
DAG 

Bayes 0.93 97.29 88.3 97.36 97.28 92.62 

 
Table 7 also helps evaluate performance of various fitted DAGs 
on the Train dataset. The DAGs achieved using Hill Climb, 
Tabu and Inter-IAMB algorithms yielded higher log- 

loss and poor values of Accuracy, Precision, Recall, Specificity 
and F1 score. This means they had poor goodness of fit and 
there is scope to fine tune the network structure and parameters 
further. The custom-built DAG was found to be giving best 
performance on the Train the lowest Log Loss, highest value of 
Accuracy, Precision, Recall, Specificity and F1 score. 
 

3.4. PGM and LR evaluation on test dataset 
Log Loss and Confusion Metrics were evaluated for both the 
final PGM model and LR model on the Test dataset. LR gave 
log loss of 1.3 and accuracy of 96.15% on train dataset; yet, it 
performed poorly on the test dataset. wrongly classified many 
of 
the non-defaulted cases as defaulted. While the test dataset has 
7648 default cases, the LR 
model reported 34030 loans as defaulted. Hence, the Precision 
score was very low (22.5%), which reflected in the F1 score 
(36.4%). On other hand, PGM has delivered better values of 
Accuracy, Precision, Specificity and overall F1-score. The 
latter values were 99.9%, 84.4%, 99.9% and 75.3% 
respectively. 
 

 Conclusions  
The present study, analysed the Fannie Mae Mortgage loan 
dataset to understand distribution of data and relationships 
between variables. Modelling for the mortgage loan dataset can 
be approached as a binary classification problem or multi-class 
classification problem. This study presented an approach to 
achieve both binary classification and multi-class classification 
with same setup, with some extra steps taken during re-
sampling of data and dataset preparations. 
Train Test split was done prior to proceeding with re-sampling 
of dataset. Class imbalance was addressed successfully utilizing 
mix of under-sampling and oversampling methods. Last Status 
was considered as a multinomial target variable for the re-
sampling process. The dataset was under-sampled using ROSE 
package as it supports both numeric and categorical variables 
for under-sampling. ROSE is designed to work with binary 
target variables. Hence a special method was devised to enable 
under-sampling for multi-class target variable. The method 
involved under-sampling majority class with respect to one 
minority class at a time and combining resulting subsets of data. 
This method was found to be giving satisfactory results on the 
mortgage loan dataset. 
SMOTE-NC algorithm was applied successfully on the under-
sampled data to get synthetic samples for all minority classes, 
keeping percentage distribution of minority classes intact. 
Percentage of Default cases was increased from 0.22% in the 
Train dataset to 17.42 % in the re-sampled Train dataset. 
Further increase in the default cases could not be achieved as a 
greater number of datapoints would need to be selected for 
some of the majority classes for keeping their ratio with 
minority class intact. This would lead to increasing size of the 
dataset as well as hardware and processing capabilities. 
Further, separate datasets were created for model building each 
PGM and LR model building. For structure learning of PGM, 
data driven approach was sought to get idea of underlying data 
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distribution and relationship of variables. Various score-based 
and constraint-based algorithms were used to get DAG for 
Bayesian Network. GM was able to deliver probabilities of 
various events, given different set of evidences. 
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