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Abstract- This study tried to pursue analysis of time series data using long-term records of global average 

absolute sea level change from 1880 to 2014 extracted from the U.S. Environmental Protection Agency 

using data from Commonwealth Scientific and Industrial Research Organization. Using the LM algorithm, 

the results revealed that the nonlinear autoregressive neural network model with 7 neurons in the hidden 

layer and 7 time delays provided the best performance at its smaller MSE value. The findings in this study 

may be able to bridge an important gap in time series forecasting by combining the best statistical and 

machine learning methods. In order to sustain these observations, research programs utilizing the resulting 

data should be able to significantly improve our understanding and narrow projections of future sea level 

rise and variability. 
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1.  Introduction 

Climate change is the long-term change that occurs 

in the average weather patterns of the earth. Sea 

level rise is caused primarily by two factors related 

to climate change: the added water from melting of 

land ice (ice sheets and glaciers) to the world’s 

oceans and the thermal expansion of seawater 

temperature rise. The potential impacts of sea level 

rise include, but not limited to, increasing coastal 

flooding and erosion, damages on agricultural land 

cover and crops, damages on coastal/urban 

settlements and infrastructures, damages on coastal 

flora and fauna ecosystems, increasing 

environmental sanitation problem, and increasing 

public health problem. 

The Intergovernmental Panel on Climate Change 

(IPCC) [14] estimated that the sea level has risen by 

26–55 cm (10–22 inches) with a 67% confidence 

interval. In its Fourth National Climate Assessment 

Report [24] the U.S. Global Change Research 

Program (USGCRP) estimated that sea level has 

risen by about 7–8 inches (about 16–21 cm) since 

1900, with about 3 of those inches (about 7 cm) 

occurring since 1993. National Oceanic and 

Atmospheric Administration (NOAA) 2019 Global 

Climate Annual Report summarized that the global 

annual temperature has increased at an average rate 

of 0.07°C (0.13°F) per decade since 1880 

(https://www.ncdc.noaa.gov/sotc/global/201913). 

There had many studies pointed out that sea level 

has risen at an increasing rate [7] [5] [6] [13] [15] 

[10. Thus, understanding past sea level is important 

for the analysis of current and future sea level 

changes. Modeling sea level change and 

understanding its causes has considerably improved 

in the recent years, essentially because new in situ 

and remote sensing observations have become 

available [8] [25] [4] [22]. Despite the importance of 

sea level rise and its consequences, there is a lack of 

studies in the technical literature available on 

prediction schemes. 

Time series forecasting is the use of a model to 

predict future values based on previously observed 

values, that is one of the most applied data science 

techniques in many disciplines. Neural networks 

have become one of the most popular trends in 

machine learning for time series modeling and 

forecasting. Neural networks can be stated as 

nonlinear nonparametric statistical method [27]. 

Given its advantages such as no assumptions, 

alternative solutions, and goal-driven 

characteristics, neural networks can be used as an 

alternative to traditional time series models to solve 

complex forecasting problems. Empirically, neural 

network model is chosen because it has good 

forecasting performance than the conventional ones 

[12], but it might not completely satisfy a systematic 

procedure in the construction of the model [23]. 

Therefore, how to formulate new models of neural 

networks is important task for future research. 

Hence, the primary purpose of this study was to 

apply the nonlinear autoregressive neural network 

(NARNN) model to analyze the long-term records 

of global average absolute sea level change from 

1880 to 2016. The reason why employed the 

NARNN model in this study because it converges 

much faster and performs better in comparison with 

the conventional neural works [1[. Specifically, the 

NARNN model were trained with the Levenberg–

Marquardt (LM), Bayesian Regularization (BR), 
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and Scaled Conjugate Gradient (SCG) training 

algorithms in this study. This novel experiment 

could be a pilot study that applied NARNN model 

for evaluating global average absolute sea level 

change. The findings in this study may be able to 

bridge an important gap in time series forecasting by 

combining the best statistical and machine learning 

methods.  

 

2.  Materials 

The data used for this study is available to the 

general public from the US Environmental 

Protection Agency 

(http://www3.epa.gov/climatechange/images/indica

tor_downloads/sea-level_fig-1.csv) using data from 

CSIRO (Commonwealth Scientific and Industrial 

Research Organization), 2015 

(http://www.cmar.csiro.au/sealevel/GMSL_SG_20

11_up.html). In order to analyze accurately, the data, 

global average absolute sea level change from 1880 
to 2014 (Figure 1), has merged two adjust sea level 

information from CSIRO (1880 – 1992) and NOAA 

(1993 – 2014) for this study. Mean global average 

absolute sea level change was 3.6408 mm with a 

standard deviation of 2.4297 mm (Minimum: -

0.4409 mm in 1882, Maximum: 8.6637 mm in 2014, 

and Median: 3.3740 mm in 1947). 

The data contains “cumulative changes in sea level 

for the world’s oceans since 1880, based on a 

combination of long-term tide gauge measurements 

and recent satellite measurements. It shows average 

absolute sea level change, which refers to the height 

of the ocean surface, regardless of whether nearby 

land is rising or falling. Satellite data are based 

solely on measured sea level, while the long-term 

tide gauge data include a small correction factor 

because the size and shape of the oceans are 

changing slowly over time. (On average, the ocean 

floor has been gradually sinking since the last Ice 

Age peak, 20,000 years ago.)” (Quoted from 

https://datahub.io/core/sea-level-rise#readme). 
 

 
Figure 1. Time Series Plot of Global Average Absolute Sea Level Change, 1880 - 2014 (R Output) 

 

3.  Methods 

3.1  Nonlinear Autoregressive Neural Network 

(NARNN) Model 

The idea behind the autoregressive (AR) process is 

to explain the present value of the time series, yt, by 

a function of p past values, (yt-1, yt-2, ⋯, yt-p). Thus, 

the AR process of order p, AR(p), is defined by the 

equation: 

yt = ϕ1yt-1 + ϕ2yt-2 + ⋯ + ϕpyt-p + et = ∑i=1 p ϕiyt-i + et 

(1) 

where ϕ = (ϕ1, ϕ2, ⋯, ϕp) is the vector of model 

coefficients for the autoregressive process, and et is 

white noise, et ~ N(0, σ2) [20]. 

The NARNN is a natural generalization of the 

classic linear AR(p) process. The NARNN of order 

p can be expressed as:  

yt = Φ(yt-1, yt-2, ⋯, yt-p, w) + ɛt  (2) 

 

 

 

where Φ(∙) is an unknown function determined by 

the neural network structure and connection 

weights, w is a vector of all parameters (weights), 

and ɛt is the error term. Thus, it performs a nonlinear 

functional mapping from the past observations, (yt-1, 

yt-2, ⋯, yt-p), to the future value, yt, which is 

equivalent to a nonlinear autoregressive model [28]. 

With the time series data, lagged values of the time 

series can be used as inputs to a neural network, 

so-called this the NARNN model. Mathematically, 

the NARNN model [3] can be written by the 

equation of the form as: 

yt = a0 + ∑j=1 k wj Φ(b0j + ∑i=1 d wijyt-i) + ɛt  (3) 

where d = the number of input units, k is the number 

of hidden units, a0 is the constant corresponding to 
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the output unit, b0j is the constant corresponding to 

the hidden unit j, wj is the weight of the connection 

between the hidden unit j and the output unit, wij is 

the parameter corresponding to the weight of the 

connection between the input unit i and the hidden 

unit j, and Φ(∙) is a nonlinear function, so-called this 

the transfer (activation) function. The logistic 

function (i.e., sigmoid) is commonly used as the 

hidden layer transfer function, that is, Φ(y) = 1 / (1 

+ exp(-y)). 

 

3.2  Training Algorithms 

The most common learning rules for the NARNN 

model are the Levenberg-Marquardt, Bayesian 

Regularization, and Scaled Conjugate Gradient 

training algorithms. Training is the process of 

determining the optimal network weights and bias 

points of the multilayer feedforward neural 

network. This is done by defining the total error 

function between the network’s output and the 
desired target and then minimizing it with respect to 

the weights. 

 

3.2.1  Levenberg-Marquardt (LM) Algorithm 

The LM algorithm, first published by Levenberg 

[16] and then rediscovered by Marquardt [18], is a 

commonly used iterative algorithm to solve non-

linear minimization problems. These minimization 

problems arise especially in least squares curve 

fitting. This curve-fitting method is a combination 

of the gradient descent and the Gauss-Newton. It 

works without computing the exact Hessian matrix. 

Instead, it works with the gradient vector and the 

Jacobian matrix, thereby increasing the training 

speed while having stable convergence [9].  

The LM algorithm is a variation of Newton’s 

method that is very well suited to neural network 

training where the performance index is the mean 

squared error. When the performance function (also 

known as network error function) has the form of a 

sum of squares, then the Hessian matrix can be 

approximated and the gradient can be computer as: 

𝐻 = 𝐽T𝐽      (4) 

G = 𝐽T𝑒      (5) 

where J is a Jacobian matrix, which contains first 

order derivatives of the network errors with respect 

to the weights and biases, 𝑒 is a vector of network 

errors. The Jacobian matrix can be computed 

through a standard backpropagation technique that 

is much less complex than computing the Hessian 

matrix. The following is the relation for LM 

algorithm computation: 

𝑥k+1 = 𝑥k – [𝐽T𝐽 + 𝜇𝐼]-1 𝐽T𝑒    (6) 

where 𝑥k = the current connection weight, 𝑥k+1 = the 

next connection weight, I = the identity matrix, and 

the scalar μ is combination coefficient.  This 

algorithm has the very useful feature when 𝜇 is 

increased it approaches the steepest descent 

algorithm with small learning rate, while 𝜇 is 

decreased to zero the algorithm becomes Gauss-

Newton [11].  

 

3.2.2  Bayesian Regularization (BR) 

Algorithm 

The BR algorithm was introduced by MacKay [17] 

automatically sets the best possible performance 

function to accomplish the excellent generalization 

on the basis of Bayesian inference approach. The BR 

algorithm is based on the probabilistic interpretation 

of network parameters. Bayesian optimization of 

regularization parameters depends upon the 

calculation of the Hessian matrix at the minimum 

point. Therefore, the BR algorithm includes a 

probability distribution of network weights and the 

network architecture can be identified as a 

probabilistic framework [21]. 

Like the LM algorithm, the BR algorithm is also 

used to optimize weights and bias and minimize 

squares of errors. It introduces network weights into 
the training objective function which is denoted as 

F(W) as follows:  

F(W) = αEW + βED    (7) 

where ED is the sum of network errors, EW is the sum 

of the squared network weights, α and β are the 

objective function parameters. The 𝛼 and 𝛽 

parameters are determined using the Bayes’ 

theorem. Moreover, the Gaussian distribution is 

employed to develop both network weight and 

training sets. These parameters are updated and 

repeated procedure until convergence achieved [26]. 

In order to find the optimal weight space, the 

objective function needs to be minimized, which is 

the equivalent of maximizing the posterior 

probability function given as follows: 

𝑃(x|𝐷, 𝛼, 𝛽, 𝑀) = 𝑃(𝐷|x, 𝛽, 𝑀) 𝑃(x|𝛼, 𝑀) / 𝑃(𝐷| 𝛼, 

𝛽, 𝑀)      (8) 

where x is the vector containing all of the weights 

and biases in the network, 𝐷 represents the training 

data set, and 𝛼 and 𝛽 are parameters associated with 

the density functions 𝑃(𝐷|x, β, 𝑀) and 𝑃(x|α, 𝑀), 

and 𝑀 is the selected model - the architecture of the 

network we have chosen [11]. 

As a result of this process, optimum values for 𝛼 and 

𝛽 for a given weight space are found. Later, 

algorithm moves into LM phase where Hessian 

matrix calculations take place and updates the 

weight space in order to minimize the objective 

function. Then, if the convergence is not met, 

algorithm estimates new values for 𝛼 and 𝛽 and the 

whole procedure repeats itself until convergence is 

reached [26]. 

 

3.2.3 Scaled Conjugate Gradient (SCG) 

Algorithm 

The SCG algorithm, developed by Møller [19], is 

based on the Conjugate Gradient Method, but this 

algorithm does not perform a line search at each 

iteration. Unlike many other standard backward 
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propagation algorithms, the SCG algorithm is fully-

automated, includes no critical user-specific 

parameters, and avoids a time-consuming line 

search. By integrating the model trust region way 

known from the LM algorithm with Conjugate 

Gradient, the SCG algorithm can be shown as [19]: 

𝑠k = [𝐸`(wk + σkpk) - 𝐸`(wk) / σk ] + λkpk   (9) 

where 𝑠 is the Hessian matrix approximation, 𝐸 is 

the total error function and 𝐸` is the gradient of 𝐸, 

scaling factors 𝜆k and 𝜎k are acquainted with 

approximate the Hessian matrix and initialized by 

user at the starting of the algorithm such that 0 < 𝜆k 

< 10-6 and 0 < 𝜎k < 10-4. For the SCG algorithm, 

factor 𝛽k calculation and direction of the new search 

as follows [19]: 

βk = (|gk+1|2 – gk +1
T gk) / gk

T gk   (10) 

pk+1 = -gk+1 + βk pk    (11) 

For the success of the algorithm, it is very important 

to update the design parameters independently at 

each iteration user. This is a major advantage 

compared to the line search-based algorithms. 

 

4.  Results 

4.1  Nonlinear Autoregressive Neural Network 

(NARNN) Model 

In MATLAB, the NARNN model applied to time 

series prediction using its past values of a univariate 

time series can be expressed as follows: 

y(t) = Φ(y(t-1), y(t-2), ⋯, y(t-d)) + e(t) (12) 

where y(t) is the time series value at time t, d is the 

time delay, and e(t) is the error of the approximation 

of the time series at time t. This equation describes 

how the NARNN model is used to predict the future 

value of a time series, y(t), using the past values of 

the time series, (y(t-1), y(t-2), ⋯, y(t-d)). The 

function Φ(∙) is an unknown nonlinear function, and 

the training of the neural network aims to 

approximate the function by means of the 

optimization of the network weights and neuron 

bias. This tends to minimize the sum of the squared 

differences between the observed (yi) and predicted 

(ŷi) values (i.e., MSE = (1/n) ∑i=1 n (yi – ŷi)2) [2].  
In this study, the NARNN model was applied to 

model and predict the time series, global average 

absolute sea level change from 1880 to 2014. 

Furthermore, the logistic sigmoid and linear transfer 

functions at the hidden and output layers were used 

respectively. The number of hidden neurons and the 

number of delays was set experimentally after a data 

pre‐processing and analysis stage. The extracted 

features were trained using the LM, BR, SCG 

training algorithms, respectively, for the target time 

series in the MATLAB (2022a) Neural Network 

Toolbox: 135 timesteps of one element, global 

average absolute sea level change from 1880 to 

2014. 

The training target timesteps are presented to the 

network during training, and the network is adjusted 

according to its error. The validation target 

timesteps are used to measure network 

generalization, and to halt training when 

generalization stops improving. The testing target 

timesteps have no effect on training and so provide 

an independent measure of network performance 
during and after training [2]. The division of the time 

series in this analytical work was 70% for the 

training, 15% for the validation, and 15% for the 

testing. Randomly, 135 data samples were divided 

into 90 data for the training, 19 data for the 

validation, and 19 data for the testing. 

The development of the optimal architecture for the 

NARNN model requires determination of time 

delays, the number of hidden neurons, and an 

efficient training algorithm. The optimum number of 

time delays and hidden neurons were obtained 

through a trial and error procedure. Furthermore, the 

LM, BR, SCG algorithms were employed for 

training of the NARNN model, respectively, and 

their performance were evaluated under the optimal 

neural network structure. The prediction 

performance of the models was evaluated by its 

MSE. The error analysis showed that the NARNN 

model with 7 neurons in the hidden layer and 7 time 

delays provided the best performance (MSE = 

0.0227) using the LM algorithm (Table 1).  

 

 

 

 

Table 1. NARNN Model Selection Using the LM, BR, SCG Algorithms 

Layer Size Time 

Delay 

LM BR SCG 

MSE R MSE R MSE R 

6 5 0.0339 0.9976 0.0330 0.9970 0.0578 0.9950 

 6 0.0272 0.9975 0.0338 0.9968 0.0468 0.9961 

 7 0.0269 0.9976 0.0335 0.9970 0.0323 0.9968 

 8 0.0235 0.9978 0.0322 0.9971 0.0432 0.9961 

 9 0.0248 0.9978 0.0301 0.9971 0.0592 0.9945 

7 5 0.0299 0.9975 0.0356 0.9968 0.0409 0.9963 

 6 0.0282 0.9973 0.0278 0.9975 0.0579 0.9951 

 7 0.0227 0.9978 0.0353 0.9967 0.0581 0.9948 

 8 0.0336 0.9969 0.0307 0.9973 0.0445 0.9962 

 9 0.0274 0.9973 0.0344 0.9968 0.0404 0.9964 

8 5 0.0263 0.9974 0.0335 0.9971 0.0349 0.9970 
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 6 0.0291 0.9976 0.0321 0.9970 0.0415 0.9960 

 7 0.0257 0.9979 0.0321 0.9970 0.0550 0.9951 

 8 0.0379 0.9972 0.0322 0.9970 0.0475 0.9956 

 9 0.0255 0.9978 0.0339 0.9967 0.0604 0.9944 

9 5 0.0231 0.9979 0.0339 0.9968 0.0492 0.9953 

 6 0.0270 0.9977 0.0306 0.9974 0.0479 0.9955 

 7 0.0239 0.9977 0.0346 0.9965 0.0507 0.9951 

 8 0.0239 0.9978 0.0306 0.9971 0.0570 0.9939 

 9 0.0232 0.9979 0.0344 0.9969 0.0451 0.9959 

Source: own work 

 

In order to train the NARNN, open loop architecture 

(Figure 2) shows a block diagram of the NARNN 

generated during MATLAB processing in the 

MATLAB (2022a) Neural Network Toolbox. In 

Figure 2, the block y(t) is the input series consisting 

of global mean absolute sea level change 

observations. The number “1” at the bottom of the 

block indicates univariate time series.  

The hidden layer of the network is illustrated in the 
second block, namely “Hidden Layer with Delays”. 

The inner boxes “w” and “b” represent input-hidden 

weights and bias respectively for a single neuron in 

the hidden layer. The term “1:3” denotes the number 

of delays used. The larger box after the summation 

sign indicates the sigmoid transfer function of each 

neuron. The number “11” at the bottom of the 

”Hidden Layer with Delays” block denotes the 

number of hidden neurons. 

The “Output Layer” block represents the output 

layer of the network. The inner boxes “w” and “b” 

represent the hidden-output weights and biases 

respectively. The transfer function of the output 

layer is linear. There is only one output neuron, 

which is denoted below the “Output Layer” block. 

The last block y(t) represents the predicted output. 

This output y(t) is different from the input y(t). Since 

the output of the network is a prediction of the input 

time series, MATLAB signifies both with the same 

variable [2].   

 

Figure 2. Open Loop Architecture (MATLAB 

Output) 

 

4.2  NARNN Training Output 

The LM algorithm typically requires more memory 

but less time. Training automatically stop when 

generalization stop improving, as indicated by an 

increase in the mean square error of the validation 

samples [2]. Table 2 displayed the training progress 

using the LM algorithm, stopped when the 
validation error increased for six iterations with 

Performance = 0.0204, Gradient = 0.00151, and Mu 

= 0.001 at epoch 13. In terms of processing time, the 

LM algorithm took 00:00:00 during training. The 

term epoch represents the number of iterations 

during training in which it is attempted to minimize 

the error function. 

 

Table 2. NARNN Training Output 

Unit Initial 

Value 

Stopped 

Value 

Target 

Value 

Epoch 0 13 1000 

Elapsed Time --- 00:00:00 --- 

Performance 85.2 0.0204 0 

Gradient 172 0.0151 1e-07 

Mu 0.001 0.001 1e+10 

Validation 

Checks 

0 6 6 

(MATLAB Output) 

 

4.2.1  NARNN Best Performance 

The performance plot illustrated the relationship 

between the training, validation, and testing phases 

in forecasting global mean absolute sea level 

change, in terms of MSE versus the number of 

epochs. The performance was evaluated by taking 

MSE and epochs after the training was completed, 

and then the values were generated. The 

performance plot is a useful diagnostic tool to plot 

the training, validation, and testing errors to check 

the progress of training. It also illustrated that the 

training stopped when the validation error increased 

at the circled epoch. As illustrated in Figure 3, the 

best performance for the validation phase was 

0.060945 at epoch 7 for the NARNN model. The 

results showed a good network performance because 

the validation error and testing error have similar 

characteristics, and it did not appear that any 

significant overfitting has occurred. 
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Figure 3. Performance Plot of the NARNN Model (MATLAB Output) 

 

4.2.2  NAR Neural Network Error Histogram 

The error histogram can give an indication of 

outliers, which are data points where the fit is 

significantly worse than that of most of the data. In 

the error histograms (Figure 4), the blue bars 

represent the training data, the green bars represent 

the validation data, and the red bars represent the 

testing data. The results showed that there had a few  

 

training points and testing points outside of the 

range. If the outliers are valid data points but are 

unlike the rest of the data, then the network is 

extrapolating for these points. It means more data 

similar to the outlier points should be considered in 

training analysis and that the network should be 

retrained. 

 

 
Figure 4. Error Histogram of the NARNN Model (MATLAB Output) 

 

4.2.3  NARNN Time-Series Response 

The dynamic network time-series response plots 

were displayed in Figure 5 for the NARNN model, 

showing that the outputs were distributed evenly on 

both sides of the response curve, and the errors  

 

versus time were small in the training, validation, 

and testing phases. The results indicated that the 

model was able to predict the time series over the 

simulation period efficiently.   
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Figure 5. Network Time-Series Response of the NARNN Model (MATLAB Output) 

 

4.2.4  NARNN Error Autocorrelation 

The error autocorrelation function describes how the 

prediction errors are related in time. For a perfect 

prediction model, there should only be one nonzero 

value of the autocorrelation function, and it should 

occur at zero lag (this is the MSE). This would mean 

that the prediction errors are completely 

uncorrelated with each other (white noise). If there 

is significant correlation in the prediction errors, 

then it should be possible to improve the prediction 

- perhaps by increasing the number of delays in the 

tapped delay lines.  

 

The correlations for the NARNN model (Figure 6), 

except for the one at zero lag, all fell approximately 

within the 99.5% confidence limits around zero, so 

the models seemed to be adequate. If there are some 

exceptions which suggest that the created network 

can be improved by retraining it or by increasing the 

number of neurons in the hidden layer. If even more 

accurate results are required, retrain the network will 

change the initial weights and biases of the network, 

and may produce an improved network after 

retraining.  

 

 
Figure 6. Error Autocorrelation of the NARNN Model (MATLAB Output) 

 

 

 

 

 

 



Vol: 05 Issue: 05 

      International Journal of Data Science and Advanced Analytics (ISSN: 2563-4429) 

 

182 
 

 

 

5.  Conclusion 

The future is more intensive in knowledge, more 

understanding of the natural complexities of living 

systems. In order to bring together a wide variety of 

perspectives and concepts, it requires holistic 

solutions that involve working across disciplines, 

principles and methods to support interdisciplinarity 

and transdisciplinarity, to explore and formalize 

systems concepts, and to develop systemic methods 

for learning and change. 

Understanding past sea level is important for the 

analysis of current and future sea level changes. Sea 

level rise is a relatively slow process, and the 

majority of impacts, with the exception of 

seasonally flooded low-lying coastal areas, are 

predicted and modeled for the future. In order to 

sustain these observations, research programs 

utilizing the resulting data should be able to 
significantly improve our understanding and narrow 

projections of future sea level rise and variability. 

Prediction is a kind of dynamic filtering, in which 

past values of the time series can be used to predict 

future values. Empirically, the NARNN model is 

good at modelling nonlinear problems for the time 

series. In this study, the NARNN model with 7 

neurons in the hidden layer and 7 time delays was 

evaluated as the optimal neural network structure 

using the LM algorithm, because it works without 

computing the exact Hessian matrix, increasing the 

training speed and has stable convergence [7]. 

According to the results of this study, this NARNN 

model not only can provided richer information 

which are important in decision making process 

related to the future global sea level rise impacts, but 

also can be employed in forecasting the future 

performance for global average sea level change 

outcomes. Thus, this study may provide an 

integrated modelling approach as a decision-making 

supportive method for formulating global average 

sea level change prediction in advance.   
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